Chapitres

  1. 01. Exercice 1
  2. 02. Exercice 2
  3. 03. Exercice 3
Les meilleurs professeurs de Maths disponibles
Chris
5
5 (558 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Greg
5
5 (378 avis)
Greg
110€
/h
Gift icon
1er cours offert !
Abdel
4,9
4,9 (186 avis)
Abdel
30€
/h
Gift icon
1er cours offert !
Houssem
5
5 (259 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Ptashanna
5
5 (260 avis)
Ptashanna
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (148 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Mounir
5
5 (386 avis)
Mounir
60€
/h
Gift icon
1er cours offert !
Madeleine
5
5 (145 avis)
Madeleine
100€
/h
Gift icon
1er cours offert !
Chris
5
5 (558 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Greg
5
5 (378 avis)
Greg
110€
/h
Gift icon
1er cours offert !
Abdel
4,9
4,9 (186 avis)
Abdel
30€
/h
Gift icon
1er cours offert !
Houssem
5
5 (259 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Ptashanna
5
5 (260 avis)
Ptashanna
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (148 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Mounir
5
5 (386 avis)
Mounir
60€
/h
Gift icon
1er cours offert !
Madeleine
5
5 (145 avis)
Madeleine
100€
/h
Gift icon
1er cours offert !
C'est parti

Exercice 1

X1(z)=1

X2(z) = 1+z-1+z-2+z-3+…

X3(z)=1+z-1+2z-2+3z-3...

X4(z)= 0,5 z-2+z-3+0,5z-4...

X5(z)=1+0,5z-1+0,25 z-2+...

X6(z)= 2+6z-1+4z-3-3z-4...

Exercice 2

Dans cet exercice, il s'agit de
décomposer le polynôme en somme de deux polynômes dont les transformées
inverses existent. Cette décomposition peut s'effectuer en fonction de la
variable z ou de son inverse z-1.

Décomposition en z avec d°(Num)
< d°(Den) (comparaison
des degrés)

On trouve A = 4 et
B = -1, ce qui donne la transformée
inverse suivante (table) :

Décomposition en z avec d°(Num)
= d° (Den)

Le dénominateur possède deux
zéros en 1 et en 2. Par identification des puissances de z, on trouve :

D'où il ressort que A =2 et B = -1. Nous avons ainsi :

En utilisant les tables de
transformation, on obtient :

Décomposition en z--1

Le dénominateur possède deux
zéros qui se situent en z-1 = 1 et 0.5. On peut donc le décomposer
en produit de deux polynômes du premier ordre.

Attention au facteur 2, la
recherche des pôles et des zéros du dénominateur ne nous renseigne pas sur ce
facteur. On obtient les coefficients A et B de la manière suivante :

On obtient A = 1 et B = -1. La
fonction de transfert s'écrit alors :

En cherchant dans la table des
transformées en z de signaux élémentaires, on trouve que la réponse
impulsionnelle obtenue vaut :

Exercice 3

En effectuant la division du
numérateur par le dénominateur, on obtient

puis en examinant les
coefficients des puissances de z, on trouve.

Vous avez aimé cet article ? Notez-le !

5,00 (1 note(s))
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !