Les meilleurs professeurs de Maths disponibles
Chris
5
5 (558 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Greg
5
5 (378 avis)
Greg
110€
/h
Gift icon
1er cours offert !
Abdel
4,9
4,9 (186 avis)
Abdel
30€
/h
Gift icon
1er cours offert !
Houssem
5
5 (259 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Ptashanna
5
5 (260 avis)
Ptashanna
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (148 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Mounir
5
5 (386 avis)
Mounir
60€
/h
Gift icon
1er cours offert !
Madeleine
5
5 (145 avis)
Madeleine
100€
/h
Gift icon
1er cours offert !
Chris
5
5 (558 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Greg
5
5 (378 avis)
Greg
110€
/h
Gift icon
1er cours offert !
Abdel
4,9
4,9 (186 avis)
Abdel
30€
/h
Gift icon
1er cours offert !
Houssem
5
5 (259 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Ptashanna
5
5 (260 avis)
Ptashanna
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (148 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Mounir
5
5 (386 avis)
Mounir
60€
/h
Gift icon
1er cours offert !
Madeleine
5
5 (145 avis)
Madeleine
100€
/h
Gift icon
1er cours offert !
C'est parti

Tout d'abord rappel de ce qu'est le théorème des gendarmes :

Soient f, g et h des fonctions définies sur ]b ; +∞[ avec b un réel.

Soit L un réel,

Si pour tout x appartenant à l'intervalle ]b ; +∞[ , g(x)<= f(x) <= h(x)

et \lim g(x) = L

x~>+∞

et \lim h(x) = L

x~>+∞

Alors \lim f(x) = L

x~>+∞

Remarque : Ce théorème aussi valable au voisinage de -∞ et de a. (a = un nombre réel)

La démonstration du théorème :

On veut démontrer que tout intervalle ouvert contenant L, contient tous les f(x) dès que x est suffisamment grand.

Soit I un intervalle ouvert contenant L.

Par hypothèse , \lim g(x)=L donc : il existe un réel a tel que si x >= a alors g(x) appartient à I.

Et par hypothèse, \lim h(x) = L, donc il existe un réel A tel que si x>A alors h(x) appartient à I.

Et par hypothèse, si x>b alors g(x) <= f(x) <=h(x)

Donc si x est supérieur au plus grand des trois réel a,b et A on a f(x) qui appartient à I.

Vous avez aimé cet article ? Notez-le !

4,00 (6 note(s))
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !