Chapitres

  1. 01. Définition
  2. 02. méthode:
  3. 03. Exemples:

Fonction et ensemble de définition

Bonjour

Les meilleurs professeurs de Maths disponibles
Chris
5
5 (553 avis)
Chris
117€
/h
Gift icon
1er cours offert !
Greg
5
5 (378 avis)
Greg
120€
/h
Gift icon
1er cours offert !
Abdel
4,9
4,9 (183 avis)
Abdel
30€
/h
Gift icon
1er cours offert !
Houssem
5
5 (253 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Ptashanna
5
5 (258 avis)
Ptashanna
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (147 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Mounir
5
5 (386 avis)
Mounir
60€
/h
Gift icon
1er cours offert !
Madeleine
5
5 (137 avis)
Madeleine
100€
/h
Gift icon
1er cours offert !
Chris
5
5 (553 avis)
Chris
117€
/h
Gift icon
1er cours offert !
Greg
5
5 (378 avis)
Greg
120€
/h
Gift icon
1er cours offert !
Abdel
4,9
4,9 (183 avis)
Abdel
30€
/h
Gift icon
1er cours offert !
Houssem
5
5 (253 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Ptashanna
5
5 (258 avis)
Ptashanna
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (147 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Mounir
5
5 (386 avis)
Mounir
60€
/h
Gift icon
1er cours offert !
Madeleine
5
5 (137 avis)
Madeleine
100€
/h
Gift icon
1er cours offert !
C'est parti

Définition

Une fonction x →  f(x) est donnée

L'ensemble de définition de f contient toutes les valeurs de x qui ont une image par f

donc, x appartient à l'ensemble de définition si f(x) existe; réciproquement, f(x) existe si x appartient à l'ensemble de définition

méthode:

Pour chercher l'ensemble de définition de f, on cherche les valeurs de x telles que f(x) existe

Pour cela, on cherche à résoudre:

_ les équations obtenues en écrivant que les dénominateurs sont différents de 0, puisque 0 n'a pas d'inverse

_ les inéquations obtenues en écrivant que les quantités sous les racines carrées sont positives, puisque √a est défini seulement lorsque a≥0

_ les inéquations obtenues en écrivant que les quantités à 'l'intérieur' des logarithmes sont strictement positives, puisque ln(a) est défini seulement lorsque a>0

Exemples:

1) Dans l'expression f(x), il n'y a pas de dénominateurs, ni de racines carrées, ni de logarithmes

donc f peut être définie sur

2) Dans l'expression f(x), le dénominateur ne s'annule pas

donc f peut être définie sur

3) L'expression du dénominateur x²-1=(x-1)(x+1) s'annule pour x=-1 ou x=1

donc f peut être définie sur -{-1; 1}

4) L'expression sous la racine carrée est positive ou nulle pour

donc f peut être définie sur

5) L'expression 'à l'intérieur du logarithme' est positive et non nulle pour

donc f peut être définie sur

Vous avez aimé cet article ? Notez-le !

4,00 (5 note(s))
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !