Chapitres

Sujet

On considère les points A ( -1 ; 0 ), B ( 3 ; -2 ) et C ( 1 ; 4 ) dans un repère orthonormé ( O ; vecteur i ; vecteur j ) du plan.

  1. Quelle est la nature du triangle ABC ?
  2. Déterminer le centre I du cercle circonscrit au triangle ABC.
  3. Soit M ( x ; y ) un point du plan, établir une relation entre x et y afin que ABCM puisse être un trapèze de base [BC] et [AM].
Les meilleurs professeurs de Maths disponibles
Greg
5
5 (116 avis)
Greg
130€
/h
Gift icon
1er cours offert !
Anis
4,9
4,9 (80 avis)
Anis
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (107 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Laurent
4,9
4,9 (91 avis)
Laurent
50€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (45 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Grégory
5
5 (89 avis)
Grégory
115€
/h
Gift icon
1er cours offert !
Jules
5
5 (33 avis)
Jules
70€
/h
Gift icon
1er cours offert !
Jean-charles
5
5 (21 avis)
Jean-charles
20€
/h
Gift icon
1er cours offert !
Greg
5
5 (116 avis)
Greg
130€
/h
Gift icon
1er cours offert !
Anis
4,9
4,9 (80 avis)
Anis
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (107 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Laurent
4,9
4,9 (91 avis)
Laurent
50€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (45 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Grégory
5
5 (89 avis)
Grégory
115€
/h
Gift icon
1er cours offert !
Jules
5
5 (33 avis)
Jules
70€
/h
Gift icon
1er cours offert !
Jean-charles
5
5 (21 avis)
Jean-charles
20€
/h
Gift icon
1er cours offert !
C'est parti

Solution

1.

( D'après le graphique, le triangle ABC semble rectangle isocèle en A.)

 

AB = ||vecteur AB|| = √ x2 + y2 avec vecteur AB ( x ; y )

vecteur AB ( 4 ; -2 ) . vecteur AC ( 2 ; 6 ) . vecteur BC ( -2 ; 6 )

AB = √ 16 + 4 = √20

AC = √ 16 + 4 = √20

BC = √ 4 + 36 = √40

 

- AB = AC = √20  donc ABC est isocèle en A

- 20 + 20 = 40

(√20)2 + (√20)2 = (√40)2

AB2 + AC2 = BC2  donc ABC est rectangle en A

Le triangle ABC est rectangle isocèle en A.

 

2.

ABC triangle rectangle isocèle, donc le milieu I du cercle circonscrit à ABC est le centre de l'hypoténuse [BC] du triangle ABC.

B ( 3 ; -2 ) . C ( 1 ; 4 )

I a pour coordonnées les demi-sommes des coordonnées des extrémités A et B du segment.

I ( (3+1)/2 ; (-2+4)/2 )

I ( 2 ; 1 )

 

3.

M ( x ; y ) tel que ABCM trapèze de base [BC] et [AM].

Les droites (AM) et (BC) sont parallèles et x < -1.

Donc les vecteurs AM et BC sont colinéaires.

vecteur AM ( x+1 ; y ) . vecteur BC ( -2 ; 6 )

Si deux vecteurs sont colinéaires alors leur déterminant est nul.

det ( vecteur AM ; vecteur BC ) = 0

6( x+1 ) - (-2)y = 0

2y = -6x - 6

y = -3x - 3  avec x < -2

>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !