Introduction

Tout le monde peut être amené à se questionner quant aux propriétés du double vitrage. En effet, il permettrait d’isoler de façon plus importante l’habitation du froid et du bruit.

Le double vitrage correspond à une paroi vitrée qui se constitue de deux vitres séparées par une épaisseur d’air qui reste immobile. On appelle cela la lame d’air. Il existe également une variante à ce principe qu’on appelle le vitrage à isolation renforcée. En effet, dans ce cas de figure, le double vitrage est rendu plus performant grâce à l’ajout d’un traitement isolant sur une ou plusieurs des faces intérieures du double vitrage.

On peut également utiliser le survitrage qui consiste en l’ajout d’une deuxième vitre à une fenêtre ancienne qui était initialement dotée d’un simple vitrage. Cela permet d’améliorer l’isolation du bâtiment sans pour autant changer la fenêtre complète.

Les caractéristiques d’un double vitrage

L’air est un excellent isolant thermique, c’est pourquoi il est utilisé dans le double vitrage et c’est aussi pour cette raison qu’un igloo est un structure très bien isolée.

L’épaisseur

On note les épaisseurs du double vitrage ainsi : A/B/C en considérant A, B et C comme correspondant aux épaisseurs en millimètres des différents éléments, respectivement la vitre extérieure, la lame d’air puis la vitre intérieure. De façon générale, on trouve plutôt des doubles vitrages 4/16/4.

Dans la plupart des cas, les deux vitres constitutives du double vitrage sont de la même épaisseur. Si ce n’est pas le cas, on parle alors de double vitrage asymétrique. Celui-ci a la particularité de fournir une meilleure isolation phonique. En effet, les fréquences de coïncidence des deux vitres seront différentes. De façon générale, la vitre extérieure correspond à la vitre la plus épaisse, on se retrouve alors souvent avec un double vitrage 10/10/4, bien que le sens de mise en place des vitres n’apporte aucun effet sur les performances d’affaiblissement acoustique du vitrage.

Effectivement, la mise en place à réellement une important lorsque l’on met en place un vitrage feuilleté. Cette mise en place sera alors conditionnée selon les contraintes de protection des personnes en fonction de la situation.

Lorsque l’on souhaite mesure l’épaisseur d’un vitrage, il est possible d’utiliser un vitromètre.

Les performances d’isolation

Un vitrage ou encore une fenêtre peuvent être qualifiés grâce à trois paramètres :

  • Le coefficient de transfert thermique. Celui-ci, noté Ug pour la vitre et Uw pour la fenêtre entière correspond à l’inverse de la résistance thermique surfacique. En effet, cette donnée, mesurée en watts par mètre carré kelvin, permet d’exprimer un flux thermique en été et respectivement un déperdition thermique en hiver par unité de surface du le vitrage ou de la fenêtre mais aussi par degré de différence de température entre la température chaude d’un côté du vitrage et l’ambiance froide de l’autre côté du vitrage. Ainsi, plus U est bas, plus on considère le vitrage comme étant isolant. On notera qu’un double vitrage standard possède un coefficient de transfert thermique Ug d’environ 2,9 W/(m²K) alors qu’un double vitrage haute performance peut atteindre 1,1 W/(m²K). Si vous souhaitez mettre un place un survitrage, vous atteindre en moyenne un Ug d’environ 3,3 W/(m²K).
  • le coefficient de transmission lumineuse. Celui-ci, noté TL, correspond au pourcentage de fraction de lumière qui entre dans le bâtiment en traversant le vitrage.
  • le coefficient transmission énergétique, encore appelé parfois facteur solaire. Celui-ci, noté g ou FS, correspond au pourcentage de fraction d’énergie solaire qui entre dans le bâtiment en traversant le vitrage. Ainsi, cette caractéristique va conditionner le confort estival. Ainsi, un vitrage avec un facteur solaire de 0,42 ne laissera pénétrer que 42% d’énergie solaire et laissera les 58% hors de l’habitation.

Comparatif de différents types de vitrage

TypeCoefficient de transmission thermique
(Ug en W/m².K)
Facteur solaire (g)Coefficient de transmission lumineuse
(Tl)
Masse par unité de surface
(kg/m²)
Triple vitrage à 2 couches faiblement émissives avec 2 lames d'argon0,850%70%30 (pour un vitrage 4/12/4/12/4)
Triple vitrage à 2 couches faiblement émissives avec 2 lames de krypton0,449%70%48 (pour un vitrage 4/18/4/18/4)
Double vitrage à isolation renforcée (VIR) avec une lame d'argon et une couche basse émissivité sur la face intérieure du vitrage extérieurEntre 1,0 et 1,140%70%20 (pour un vitrage 4/16/4)
Double vitrage à film suspendu avec 2 lames de krypton0,653%73%20 (pour un vitrage 4/10/film/10/4)
Double vitrage à film suspendu avec 2 lames de xenon0,337%48%20 (pour un vitrage 4/12/film/12/4)

Les transferts thermiques

Le double vitrage permet d’éviter tout transfert de chaleur. Que ce soit l’entrée du froid en hiver, ou la sortie de la fraîcheur en été.

Ce qu’on appelle transfert thermique en sciences est plus couramment appelé chaleur dans la vie quotidienne. Un transfert thermique correspond à l’un des modes d’échange d’énergie thermique entre deux systèmes. Dans le cas du double vitrage, on parlera du système extérieur  et du système intérieur (la maison). Cela correspond à une notion fondamentale de la thermodynamique et, contrairement au travail, les transferts thermiques correspondent à un bilan de transferts d’énergie dits microscopiques et désordonnées.

Il est possible de distinguer trois type de transfert thermique, tous pouvant coexister :

  • La conduction correspond à la diffusion progressive de l’agitation thermique dans la matière ;
  • La convection correspond au transfert thermique qui accompagne des déplacements macroscopiques de la matières ;
  • Et le rayonnement qui correspond à la propagation de photons.

Ainsi, la quantité de chaleur, notée Q et exprimée en joule, correspond à la quantité d’énergie qui sera échangée par le moyen de ces trois différents type de transfert. Une convention indique alors que, lorsque Q > 0, on dit que le système reçoit de l’énergie. De plus, il peut être intéressant de retenir que la thermodynamique fait appel au concept de chaleur afin de mettre en place le premier mais aussi de deuxième principe de la thermodynamique.

Malgré tout cela, il reste de nombreuses ambiguïtés mais également de nombreuses confusions qui s’entretiennent. En effet,  malgré le sens que l’on accorde à chaleur dans la vie quotidienne, le principe de chaleur au sens thermodynamique du mot n’a aucun lien avec la température. Cependant, il reste vrai que les transferts thermiques spontanées se font toujours du système le plus élevé en température vers le système le moins élevé en température même s’il reste possible de provoquer l’inverse grâce à une machine thermique comme un réfrigérateur.

Il est d’ailleurs intéressant de noter que, lorsqu’il y a un changement d’état, le corps pur ne changera pas de température bien qu’il échange de l’énergie sous forme de chaleur.

C’est pour cela que, lorsque nos mains sont froides, elles sont immédiatement réchauffées lorsque l’on tient une tasse de boisson chaude : l’énergie thermique va du corps le plus chaud vers le corps le plus froid.

La thermodynamique

Les principes de la thermodynamiques

Il est important de noter que le premier et le deuxième principe de la thermodynamique sont les plus importants, mais il peut tout de même intéressant de connaître les deux autres.

Le principe zéro de la thermodynamique

Ce principe concerne la notion d’équilibre thermique. Ainsi, il est à la base de la thermométrie et s’énonce ainsi : si deux systèmes sont en équilibre thermique avec un troisième, alors ils sont aussi ensemble en équilibre thermique.

Le premier principe de la thermodynamique

Egalement appelé principe de la conservation de l’énergie, ce principe affirme que l’énergie est toujours conservée. Formulé autrement, cela signifie que l’énergie totale d’un système isolé reste constante. Ainsi, les événements qui se produisent au sein du système isolé ne se traduisent donc que par des transformations de certaines formes d’énergie en d’autres formes d’énergie. Puisque l’énergie ne peut pas être produite en partant de rien, elle est présente en quantité invariable dans la nature. Elle ne peut donc que se transmettre d’un système à un autre : on ne crée par l’énergie, on la transforme.

Ce principe est également considéré comme étant une loi générale pour toutes les théories physiques, notamment en mécanique, électromagnétisme ou physique nucléaire puisqu’on ne lui a jamais trouvé la moindre exception même si des doutes peuvent subsister lorsque l’on étudie les désintégration radioactives.

De puis le théorème de Noether, on sait que la conservation de l’énergie est intimement reliée à une uniformité de structure de l’espace-temps.

Le premier principe de la thermodynamique rejoint alors le célèbre principe popularisé par Lavoisier : « Rien ne se perd, rien ne se crée, tout se transforme. »

Le deuxième principe de la thermodynamique

Egalement appelé principe d’évolution des système, ce principe affirme la dégradation de l’énergie. En effet, l’énergie d’un système passe de façon nécessaire et spontanée de formes concentrées et potentielles à des formes diffuses et cinétiques telles que le frottement ou la chaleur.

Ce principe introduit donc également la notion d’irréversibilité d’une transformation et la notion d’entropie. En effet, d’après le deuxième principe de la thermodynamique, l’entropie d’un système isolé augmente ou reste constante. Souvent interprété comme une mesure du désordre et comme l’impossibilité du passage du désordre à l’ordre sans intervention extérieur.

L’interprétation de ce principe se base sur la théorie de l’information de Claude Shannon et la mesure de cette information, également appelée entropie de Shannon.

La principale différence de ce principe avec le premier principe de la thermodynamique est l’origine statique de ce deuxième principe. En effet, les lois microscopiques qui gouvernent la matière ne le contiennent qu’implicitement et de manière statique. Cependant, le deuxième principe de la thermodynamique reste relativement indépendant des caractéristique des lois précédemment citée puisqu’il apparaît même si l’on suppose des lois simplistes à petite échelle.

Le troisième principe de la thermodynamique

Ce principe, quant à lui, est associé à la descente vers un état quantique fondamental d’un système dont la température s’approche d’une limite qui définit la notion de zéro absolu. En effet, en thermodynamique classique, ce principe permet de calculer l’entropie molaire S d’un corps pur par intégration sur la température à partir de S=0 à 0 K dans le but d’établir des tables de données thermodynamiques.

La loi de Laplace en thermodynamique

En thermodynamique, cette loi correspond à une relation reliant la pression et le volume d’un gaz parfait qui subit une transformation dite isentropique ou une transformation dite adiabatique et réversible. Mais cette relation peut également être utilisée avec la température et le volume ainsi que la température et la pression.

La loi de Laplace suppose en effet des capacités thermiques constante alors que les capacités thermiques d’un gaz parfait dépend évidemment de la température, il suffit de regarder la loi des gaz parfait. En conséquence, cette loi ne peut être appliquée à des transformation où la variation de la température est peu important. On peut alors considérer que les capacités thermiques sont constantes.

    \[ P \times V = n \times R \times T \]

Avec :

  • P est la pression d’un gaz (en pascals) ;
  • V le volume occupé par le gaz (en m3) ;
  • n la quantité de matière (en moles) ;
  • R la constante universelle des gaz parfaits (8,3144621 J/K/mol) ;
  • Et T est la température (en kelvins).

Quelques définitions complémentaires

Chaleur de réaction

Au cours d’une réaction chimique, on dit que le système échange de l’énergie avec le milieu extérieur. Cet échange se fait sous la forme de transfert thermique, anciennement appelé chaleur.

Cette énergie échangée sous forme de transfert thermique Q dépend des conditions expérimentales dans lesquelles se produit la réaction :

  • Volume constant, on parle d’une transformation isochore, la thermodynamique montre que Q est égale à la variation d’énergie interne du système. On peut alors noter Qv = ΔU (c’est notamment le cas de la bombe calorimétrique)
  • Pression constante, la chaleur est égale à la variation d’enthalpie : Qp = ΔH (ce qui représente le cas très fréquent des réactions effectuées à l’air libre).

Enthalpie libre

Pour tout système thermodynamique, il est défini une fonction d’état appelée enthalpie libre ou encore énergie de Gibbs. Cette fonction, notée G, est telle que G = H – TS avec :

  • H l’enthalpie en joules ;
  • T la température en kelvin ;
  • et S l’entropie en J.K-1.

Cette fonction d’enthalpie libre est une fonction d’état considérée comme indispensable pour l’étude des équilibres chimiques. En effet, cette fonction ne peut que décroître dans le cas d’une transformation à pression et température constantes selon le deuxième principe de la thermodynamique. Cela permet donc, dans le cas d’une réaction chimique effectuée à T et P constantes, d’avoir le signe de l’enthalpie libre de réaction qui indique le sens dans lequel se déplace l’équilibre chimique. Ainsi, lorsque l’enthalpie libre atteint un minimum et donc qu’elle ne varie plus, alors l’équilibre chimique est atteint.

Exercice : les apports du matériau double vitré

Quel est l’intérêt d’un double vitrage par exemple : un « 4/12/4 » soit 2 vitres d’épaisseur 4 mm séparées d’une couche d’air de 12 mm d’épaisseur par rapport à une simple vitre de 4 mm d’épaisseur ?

Données :

conductivité thermique de l’air : λ=0,025 W/mK

conductivité thermique du verre : λ=1,0 W/mK

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (Aucune note pour le moment)
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide