Comment se comportent les ondes lumineuses en cas de réfraction ?

Les ondes

Comment observer une onde mécanique ? Il est assez facile d'observer une onde dans la vie de tous les jours. Essayez donc !

Une onde est une déformation ou une vibration qui se propage dans un milieu défini. Il existe trois types différents d’ondes :

  • Mécanique : Les ondes magnétiques nécessitent une matière qui se déforme afin de se propager. Ce matériau a la capacité recouvrer son état initial grâce aux forces de restauration qui inversent la déformation.
  • Électromagnétique : Les ondes électromagnétiques quant à elles n’ont pas besoin de support pour se déplacer : elles correspondent à des oscillation périodiques de champs électriques et magnétiques qui peuvent alors se déplacer dans le vide.
  • Gravitationnelle : Les ondes gravitationnelles n’ont plus de support pour se déplacer puisque ce sont les déformations de la géométrie de l’espace-temps qui se propagent.
Superprof

La lumière

La lumière est une onde lumineuse constituée de particules : les photons. Une particule est dite subatomique quand elle est de taille inférieure à celle de l'atome et notamment du noyau. On analyse ces éléments dans la physique des particules. L'atmosphère, les nuages, le sol ou les océans reçoivent la lumière solaire. Ils renvoient une partie de cette lumière dans toutes les directions : on dit qu'ils diffusent la lumière. La lumière est un élément essentiel à la vie. En effet, elle est nécessaire à la photosynthèse, et elle permet aux êtres vivants de refaire des réserves en vitamine D, nécessaire à la vie. La Lune, les planètes, les comètes et tous les corps du système solaire, sont éclairés par le Soleil. Ils sont visibles car leur surface diffuse une partie de la lumière solaire. Les photographes utilisent des écrans diffusant pour obtenir un éclairage sans ombre sur le sujet. Les planètes, les nuages, les écrans diffusant sont des objets lumineux qui ne produisent pas de lumière. Ils diffusent la lumière qu'ils reçoivent : ce sont des sources secondaires de lumière.

Pourquoi ne peut-on pas vivre dans l'obscurité ? La lumière est un composant essentiel dans la vie des être-vivants. Sans celle-ci, la vie telle que nous la connaissons serait très différente.

La propagation d'une onde lumineuse

Une onde se propage dans un milieu qui le lui permet car la propagation résulte de la mise en mouvement d’une particule dans le temps mais aussi dans l’espace par rapport au milieu. Cela est possible uniquement si la source est dans un état vibratoire. On peut caractériser la propagation d’une onde par sa vitesse de propagation à l’aide la formule suivante : [ c = lambda times f ] Avec :

  • c la célérité de l’onde ;
  • λ la longueur d’onde ;
  • f la fréquence de l’onde.

Remarque : La vitesse de la lumière est de 300 000 km.s-1 et la célérité d’une onde sonore est de 344 m.s-1 La fréquence d'une onde ne dépend que de la fréquence de la source mais ne dépend pas de la fréquence de l'onde. La célérité d'une onde v dépend du milieu de propagation.

  • Elle est toujours inférieure à celle de cette onde dans le vide c . v < c .
  • n est toujours inférieur à 1 . n < 1

Dans le vide, la célérité de la lumière est c = 299 792 458 m.s-1 (on retiendra c = 3.108 m.s-1). La célérité de la lumière dans le vide ne dépend pas de la fréquence de l'onde. La célérité de la lumière dans l'air est pratiquement égale à sa célérité dans le vide.

La réfraction

Comment peut-on observer un arc-en-ciel chez soi ? Il est assez facile d'observer la réfraction de la lumière chez soi. Vous pouvez, par exemple, utiliser un prisme ou un verre d'eau.

La réfraction est le changement de direction que subit un rayon lumineux lorsqu'il traverse la surface de séparation entre deux milieux transparents.

L'indice d'un milieu

Un milieu transparent est caractérisé par son indice de réfraction. L'indice de réfraction d'un milieu transparent correspond au rapport entre la célérité d'une onde se propageant dans le vide et sa célérité dans le milieu considéré. [ n = frac { c } { v } ] Avec

  • n correspondant à l'indice de réfraction du milieu transparent et qui est une grandeur sans unité ;
  • c correspondant à la célérité de l'onde dans le vide. La célérité est égale à 3.108 m.s-1 ;
  • Et v correspondant à la célérité de l'onde dans le milieu transparent qui s'exprime en m.s-1.

Un milieu est dit dispersif si la célérité d'une onde lumineuse monochromatique qui se propage dans ce milieu dépend de sa fréquence (donc de sa longueur d'onde dans le vide). L'indice de réfraction d'un milieu dispersif dépend donc de la fréquence de l'onde qui s'y propage.

La loi de Descartes

Définition : La réfraction de la lumière correspond au changement de direction du rayon lumineux lorsque celui-ci traverse une surface séparant deux milieux d'indices de réfraction différents.

En effet, la loi de Snell-Descartes de la réfraction exprime le changement de direction d'un faisceau lumineux lors de la traversée d'une paroi qui sépare deux milieux différents. Il faut d'abord savoir que chaque milieu est caractérisé par sa capacité à « ralentir » la lumière. On modélise cette caractéristique par son indice de réfraction n qui s'exprime sous la forme : [ n = frac { c } { v } ] Où v est la vitesse de la lumière dans ce milieu et c est la vitesse de la lumière dans le vide (souvent arrondie à 3.108 m.s-1 Il est important de savoir que :

  • Le rayon lumineux est dit incident avant d'avoir rencontré la surface réfractante (appelée dioptre), il est dit réfracté après avoir rencontré cette dernière.
  • Le point de rencontre du rayon incident et du dioptre est appelé point d'incidence.
  • Le plan contenant le rayon incident et la normale au dioptre, au point d'incidence est dit plan d'incidence.
  • L'angle orienté i1 pris entre la normale au point d'incidence et le rayon incident est dit angle d'incidence.
  • L'angle orienté i2 pris entre la normale au point d'incidence et le rayon réfracté est dit angle de réfraction.
  • Les angles i1 et i2 sont positifs s’ils sont orientés dans le sens trigonométrique (sens inverse des aiguilles d'une montre), négatifs sinon.

On prend n1 l'indice de réfraction du milieu dans lequel se propage le rayon incident et n2 celui du milieu dans lequel se propage le rayon réfracté. Pour pouvoir énoncer la loi de la réfraction, il faut que le rayon réfracté, le rayon incident et la normale (au dioptre) soient dans un même plan qui est appelé le plan d'incidence et que le rayon incident et le rayon réfracté soient situés de part et d'autre de la normale. Lorsque n> n2 (et respectivement n< n2) le rayon réfracté (et respectivement : incident) se rapproche plus rapidement du dioptre que le rayon incident (ou réfracté). Cependant, il existe un cas particulier où le rayon réfracté (ou incident) se retrouve mathématiquement sur le dioptre (sa limite) : il y a alors réflexion totale.

La réfraction dans l'atmosphère

Pourquoi ne sommes-nous pas irradiés par le Soleil ? L'atmosphère terrestre joue un rôle protecteur. En effet, l'atmosphère nous protège des rayons néfastes du Soleil.

La réfraction atmosphérique correspond à un phénomène optique consistant en une trajectoire non rectiligne de la lumière lorsque celle-ci traverse l'atmosphère. Cela est principalement dû à une variation de la densité de l'air avec l'altitude.

L’atmosphère correspond à la couche de gaz qui entoure la Terre. Cette dernière joue un rôle de protection en nous protégeant de ce qui se trouve au-delà, dans l’espace, comme les rayons du soleil ou les corps étrangers. L’air que contient l’atmosphère est constitué à 78 % de diazote, de 21 % de dioxygène et le dernier pourcent représente une multitude d’autres gaz tels que le méthane, l’ozone, le dioxyde de carbone, l’argon, néon, krypton, xénon, etc.

Ainsi, pour tous les objets dits immergés dans l'atmosphère, le phénomène se renomme réfraction terrestre. Ce sont d'ailleurs ces réfractions terrestres qui conduisent aux mirages mais aussi aux effets de miroitement et d'ondulation en ce qui concerne les objets lointains. De ce fait, en astronomie d'observation, la réfraction atmosphérique peut provoquer des erreurs en ce qui concerne l'évaluation de la position angulaire réelle de l'astre qui est observé. En effet, cet astre sera observé plus haut dans le ciel qu'il ne l'est dans sa position réelle. C'est pour cela qu'il est nécessaire, voire obligatoire, d'observer une correction de hauteur, également appelé de réfraction atmosphérique. Cependant, il faut savoir que ce phénomène ne se contente pas d'affecter les rayons lumineux mais, de façon plus générale, il impacte toutes les ondes électromagnétiques. De fait de sa relation avec la longueur d'onde, on appelle cela le phénomène de dispersion, la lumière bleue sera plus fortement affectée par le phénomène que le serait la lumière rouge. C'est donc pour cela que, à cause de leur spectre, certain objets astronomiques peuvent voir les images en haute résolution s'étaler. Notons que la lumière verte peut, en partie, être interprété par la réfraction atmosphérique mais aussi par la dispersion. Un autre phénomène bien connu, l'observation du Soleil sous forme oblongue -donc légèrement aplati- lorsqu'il est à l'horizon, est un autre phénomène provoqué par la réfraction atmosphérique. Ce phénomène est d'ailleurs également observable pour la Lune. Notons cependant que la réfraction atmosphérique est beaucoup plus importante pour tout objet proche de l'horizon par rapport aux objets qui seront plus près du zénith. C'est pour cela que les astronomes, dans le but de limiter les effets de la réfraction atmosphérique, préfèrent l'observations des objets lorsqu'ils se situent à leur point culminant de leur trajectoire dans le ciel. Mais c'est également pour cela que les marins, afin de se guider, ne visent pas les étoiles proches de l'horizon mais plutôt celles qui se trouvent au moins à 20° au-dessus de cet horizon. Malgré tout, s'il n'est pas possible d'éviter les observations proches de l'horizon, il est tout à fait possible, sur certains instruments d'optique, de compenser les décalages observés à cause de la réfraction atmosphérique mais également ceux à cause de la dispersion. Il faut tout de même savoir que la réfraction atmosphérique dépend également de la pression atmosphérique et également de la température. C'est pour cela que les instruments permettant de corriger les effets précédemment cités causés par la réfraction atmosphérique et la dispersion se doivent d'être technologiquement complexe. De ce fait, leur coût élevé minimise leur expansion. Le problème est encore plus ancré dans le cas où la réfraction atmosphérique est non-homogène, principalement à cause de la présence de turbulences dans l'air. Ce sont ces mêmes turbulences qui provoquent d'ailleurs le phénomène de scintillation des étoiles. De nombreuses formules existent dans le but de calculer la réfraction pour une hauteur définie. Voici l'une des formules proposées avec :

  • R la réfraction ;
  • Et h la hauteur vraie en degrés de l'astre considéré.

[R = frac { 1,02 } { tan left( h + frac { 10,3 } { h + 5,11 } right) } ] Notons que cette formule suppose que l'observation est effectuée au niveau de la mer, à une pression atmosphérique de 1010 millibars, et pour une température de 10 °C. Nous avons vu précédemment que les mirages et donc la réfraction atmosphérique étaient dû à la déviation des rayons lumineux par des couches d'air de température différentes. En effet, au sein de ces couches, l'indice de réfraction de l'air n'est pas constante puisque celui-ci peut évoluer en fonction de la température, de la pression atmosphérique mais aussi en fonction de l'humidité et de la composition de l'air. De ce fait, les couches d'air froid sont plus denses que les couches d'air chaud et leur indice de réfraction est donc plus élevé puisque celui-ci évolue de façon proportionnelle à la pression mais de façon inversement proportionnelle à la température. La superposition de couches d'air de plus en plus chaudes ou, au contraire, de plus en plus froides, va provoquer la création d'un gradient de température mais aussi de pression et par conséquence d'indice de réfraction pour l'air.

Conclusion sur la réfraction atmosphérique

Comme vu précédemment, les mirages correspondent à un phénomène optique découlant de la déviation des faisceaux lumineux par des superposition de couchers d'air ayant des températures différentes. On se trouve alors dans le cas d'une propagation anormale de la lumière au sein d'une atmosphère dans laquelle la température, la pression ainsi que l'humidité restent constante verticalement selon la normale. Ainsi, la déviation des rayons lumineux peuvent donner l'impression que l'objet observé se situe autre que sa localisation réelle. De ce fait, il serait incorrect de définir un mirage comme une illusion d'optique ou encore comme une hallucination : il est possible de photographier un mirage ! En effet, il s'agit plutôt d'une déformation mentale d'une image provoquée par une interprétation fausse du cerveau.

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (3,00/ 5 pour 2 votes)
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide
avatar
marco
marco
Invité
23 Août.

Très bien !
Juste un petit détail de notation : tu n’as pas les mêmes angles dans ta formule de Descartes et ton schéma.

physico
physico
Invité
26 Nov.

J’ai pas trouvé les choses que je cherchais mais bon,merci quand meme =)

taibe
taibe
Invité
12 Mar.

tres bien juste un ptit truc c’est entre 400 et 700 nm pas 800 nm