Chapitres
Problématique
Comment peut-on étudier la vibration de l'air dans un instrument à vent ?
Analyse du problème
- Emission d'un son par un instrument à vent : vibration de l'air dans un tuyau provoque la transmission de cette vibration dans l'air en sortie du tuyau, on a ainsi la vibration de l'air
- Plusieurs modes d'excitation de l'air pour le faire vibrer :
- embouchure : flûte, trompette, trombone
- anche : clarinette, hautbois
Quelles que soient ces excitations, quelles sont les équations qui expriment la vibration de l'air ?
- L'air est un système complexe (mouvements à 3D des particules d'air, fluide compressible)
Est-il nécessaire d'utiliser un modèle simple ?
- Le cours sur les ondes contient différents exemples de différents domaines de la physique
Il y a donc la nécessité d'un formalisme et d'une méthodologie communes à tous les exemples
Les ondes et leur propagation
- L'onde mécanique : Les ondes magnétiques nécessitent une matière qui se déforme afin de se propager. Ce matériau a la capacité recouvrer son état initial grâce aux forces de restauration qui inversent la déformation.
- L'onde électromagnétique : Les ondes électromagnétiques quant à elles n’ont pas besoin de support pour se déplacer : elles correspondent à des oscillation périodiques de champs électriques et magnétiques qui peuvent alors se déplacer dans le vide.
- L'onde gravitationnelle : Les ondes gravitationnelles n’ont plus de support pour se déplacer puisque ce sont les déformations de la géométrie de l’espace-temps qui se propagent.
Le son correspond a une vibration mécanique d'un fluide qui va alors se propager, grâce à la déformation élastique du fluide, en prenant la forme d'ondes longitudinales. Les Hommes, mais également beaucoup d'autres animaux, peuvent ressentir cette vibration grâce au sens que nous appelons : l'ouïe. On peut alors dire que le son correspond à une onde mécanique progressive.
Une onde mécanique progressive correspond a un phénomène de perturbation locale dans un milieu matériel. Ainsi, pour une onde mécanique, on ne peut observer de déplacement de matière mais un transport d’énergie.
Les ondes sonores audibles sont caractérisées par des fréquences allant de 20 Hz à 20 kHz, ce qui correspond à des longueurs d'onde allant de 0,017 m à 17 m. Un onde se propage dans un milieu qui le lui permet car la propagation résulte de la mise en mouvement d’une particule dans le temps mais aussi dans l’espace par rapport au milieu. Cela est possible uniquement si la source est dans un état vibratoire. On peut caractériser la propagation d’une onde par sa vitesse de propagation à l’aide la formule suivante : [ c = lambda times f ] Avec :
- c la célérité de l’onde ;
- λ la longueur d’onde ;
- f la fréquence de l’onde.
Remarque : La vitesse de la lumière est de 300 000 km.s-1 et la célérité d’une onde sonore est de 344 m.s-1
Propagation de l'onde sonore dans l'air
- La nature du milieu ;
- La température du milieu ;
- Et la pression du milieu.
Ainsi, dans un gaz parfait, on peut obtenir la vitesse de propagation d'une onde sonore avec la relation suivante : [ c = frac { 1 } { \sqrt { rho chi _{S} } } ] Avec :
- ρ correspondant à la masse volumique du gaz ;
- Et χS correspondant à la compressibilité isentropique du gaz.
Il est également possible d'observer une diminution de la vitesse du son lorsque :
- La densité du gaz augmente, on appelle cela l'effet d'inertie ;
- La compressibilité du gaz, c'est à dire sa capacité à changer de volume selon la pression qu'il subit, augmente.
Pour calculer la vitesse du son dont l'unité est, rappelons-le, le mètre par seconde, il est possible d'utiliser l'expression suivante : [ c _ { text { air } } = 330 + 0,6 times T ] avec T la température en degré Celsius. Mais il est possible d'être plus précis en utilisant les degrés Kelvin. On doit alors se servir de l'expression suivante : [ c _ { text { air } } = 20 times \sqrt { T } ] Notons que, de façon générale, la vitesse du son dans l'eau est de 1 500 m.s-1. Mais il existe de nombreux milieux où les ondes sonores peuvent se propager de façon encore plus rapide. On peut alors prendre l'exemple de l'acier au sein duquel les ondes se propage une vitesse comprise entre 5 600 et 5 900 m.s-1. Cependant, une onde sonore est incapable de se propager dans le vide puisqu'il faut nécessairement la présence de matière déformable pour que la vibration puisse se propager.
La double périodicité des ondes mécaniques périodiques progressives
Prenons pour exemples deux points : M1 et M2. M1 et M2 vont reproduire le mouvement de la source. Ils vont vibrer à la même fréquence. Un point du milieu de propagation va se retrouver dans le même état vibratoire au bout d'une durée : T source. Les trois points M , M' et M'' se retrouvent au même instant dans le même état vibratoire, on dit qu'ils vibrent en phase. Ces points on les retrouve à intervalle d'espace régulier dans un milieu. On parle donc de périodicité spatiale. Longueur d'onde : La distance séparant deux points consécutifs du milieu vibrant en phase est appelée longueur d'onde. On la note λ et s'exprime en mètre. Autrement dit, la longueur d'onde correspond à la distance parcourue par l'onde dans le milieu matériel pendant une période de vibrations de la source.
Caractériser une onde sonore
Le décibel
Le décibel, en acoustique environnementale, permet d'indiquer le niveau de bruit. En effet, cette grandeur permet d'exprimer le rapport de puissance existant enter la pression acoustique et une valeur de référence qui a été choisie comme correspondant à un son imperceptible. D'une façon générale, le niveau sonore en champ libre, ce qui signifie sans obstacle sur le trajet de l'onde, est inversement proportionnel au carré de la distance, c'est-à-dire à la distance multipliée par elle-même.
La pression acoustique
La pression acoustique correspond à une grandeur physique qui stimule l'audition humaine. La plage de pression qui donne un niveau sonore perceptible par l'Homme est comprise entre un rapport de un et plusieurs millions. Attention cependant, la percepteur du volume sonore est, de façon approximative, logarithmique. Cela signifie alors qu'une augmentation définie du volume correspondra à multiplier la pression par un facteur qui est identique. C'est pourquoi on ne convertit que très rarement la mesure du bruit, qui est de façon générale, correspondant à la pression acoustique en décibel.
L'intensité acoustique
Afin de déterminer les chemins de propagation des sons dans un environnement, les études acoustiques utilisent fréquemment l'intensité acoustique. Cette grandeur correspond à la représentation de la puissance acoustique qui est transmise dans une direction définie. S'établissant généralement à partir d'un gradient de pression, on utilise logiquement un réseau de capteurs ou encore en ensemble de capteurs de vitesse acoustiques que l'on couple à un capteur de pression. Attention toutefois aux confusions. En effet, parler d'une intensité acoustique n'induit pas toujours que l'on parle d'un niveau sonore. Il suffit pour démontrer cela de prendre l'exemple d'une onde stationnaire : son intensité est nulle alors que la pression acoustique ne l'est pas et l'on entend pourtant un son.
Une onde dite stationnaire correspond à la propagation simultanée et dans des sens opposés de plusieurs ondes de même fréquence et de même amplitude dans un même milieu. Ainsi, on observera une figure dont certains points sont fixes, appelés nœuds de pression, dans le temps. Il est alors possible d’observer une vibration stationnaire et d’intensité différente en chaque point observé au lieu de pouvoir observer une onde qui se propage.
La puissance acoustique
Afin de comparer deux sources de bruit, il est nécessaire d'utiliser la puissance acoustique qui s'exprime en dB SWL. Il est possible d'obtenir la valeur de cette grandeur en plaçant la source que l'on souhaite tester dans une chambre réverbérante afin que les sons soient mélangés dans toutes les directions. Mais il est également possible d'obtenir cette valeur en effectuant une série de mesures tout autour de la source sonore à tester.
Quand elle se propage, l'énergie de l'onde varie
L’onde, lorsqu’elle se propage, s’accompagne d’une modification temporaire des propriétés du milieu comme la position, la vitesse et la distance entre les particules constitutives du milieu modifié. Ainsi, l’énergie, qu’elle soit potentielle ou cinétique, varie lorsque le signal est atteint. Notez tout de même que la variation d’énergie est temporaire et se déplace de proche en proche : elle ne dure que le temps de passage de l’onde.
Le son et les instruments
Réalisation d'un exercice type
- Le modèle
- Mise ne équation : 2 équations couplées
- Couplage des deux variables par l'inertie
- Couplage des deux variables par l'élasticité
- Découplage des équations
- Equation de d'Alembert 1D
Validation du résultat
- Réversibilité de l'équation
- Ordre de grandeur de la célérité
- Ordre de grandeur des fréquences sonores
- Nécessité de retenir l'une des équations couplées pour définir plus tard les impédances des ondes
Si vous désirez une aide personnalisée, contactez dès maintenant l’un de nos professeurs !
Intéressant