Mécanique des solides : Le mouvement

Énergies

Énergie cinétique

Tout corps en mouvement possède une énergie cinétique. Elle peut être macroscopique : elle dépend alors de la vitesse du corps en mouvement, et donc du référentiel d'étude microscopique : elle est liée à l'agitation moléculaire. Une augmentation de l'énergie cinétique microscopique se traduit par une augmentation de la température.

En résumé, l'énergie cinétique correspond à l'énergie d'un objet en mouvement.

La formule est :

    \[ E _ { c } = \frac { 1 } { 2 } \times m \times v ^ { 2 } \]

Avec :

  • Ec correspondant à l'énergie cinétique de l'objet étudié avec pour unité le Joule noté J ;
  • m correspondant à la masse de l'objet étudié avec pour unité le kilogramme noté kg ;
  • Et v correspondant à la vitesse de l'objet étudié avec pour unité la mètre par seconde noté m.s-1.
Exemple

Prenons le cas d'un système en translation. Il est important de savoir que la relation définissant l'énergie cinétique ne s'applique pas pour les solides en rotation.

L'énergie cinétique d'une voiture qui pèse 1 tonne et qui roule à 130 Km/h est de

    \[ E _ { c } = \frac { 1 } { 2 } \times 1000 \times \left( \frac { 130 } { 3,6 } \right) ^ { 2 } = 652 \space 006 \text { J } \]

Énergie potentielle (ou de position)

Pourquoi un objet casse plus facilement quand il tombe de haut ? Plus vous vous trouvez en hauteur, plus votre énergie potentielle sera élevée.

Elle dépend de la position relative des différentes parties du système : seul un système déformable pourra posséder, à l'échelle macroscopique, de l'énergie potentielle.

En résumé, l'énergie potentielle correspond à l'énergie contenue dans un objet au-dessus du sol.

La formule est :

    \[ E _ { p } = m \times g \times h \]

  • Ep correspondant à l'énergie potentielle de l'objet étudié avec pour unité le Joule noté J ;
  • m correspondant à la masse de l'objet étudié avec pour unité le kilogramme noté kg ;
  • g correspondant à l'intensité de pesanteur avec pour unité le Newton par kilogramme noté N.kg-1. A noter que la valeur approximative de g est de 9,81 N.kg-1.
  • Et v correspondant à la vitesse de l'objet étudié avec pour unité la mètre par seconde noté m.s-1.

Énergie mécanique

L'énergie mécanique Em d'un système est une grandeur macroscopique, somme de son énergie cinétique Ec et de son énergie potentielle Ep.

    \[ E _ { M } \left( J \right) = E _ { c } \left( J \right) + E _ { p } \left( J \right) \]

L'énergie mécanique dépend alors du référentiel d'étude.

Vitesse

La vitesse est une grandeur physique qui est définie par une évolution face au temps.

La vitesse ne définit pas qu’uniquement la vitesse de déplacement mais peut aussi correspondre à la vitesse de réaction chimique ou encore une vitesse de séchage par exemple.

En règle générale, une vitesse est égale à la division de la mesure d’une variation telle qu’une longueur, un volume ou encore un poids par la mesure du temps écoulé au cours de cette variation.

L’exemple le plus simple est celui de la vitesse de déplacement. Il s’agit d’une distance divisée par un temps comme les mètres par seconde ou les kilomètres par heure.

Masse

Qu'elle est le lien entre la masse et le poids ? Attention à ne pas confondre masse et poids, ces deux grandeurs sont différentes et n'ont pas la même signification.

En physique, la masse correspond à une grandeur physique positive et intrinsèque d'un corps.

De façon plus précise, en physique newtonienne, la masse correspond à une grandeur extensive. Cela signifie alors que la masse d'un corps formé de parties correspond à la somme des masses de ces différentes parties qui le compose.

De plus, il est essentiel de noter que la masse est une grandeur conservative. De ce fait, elle reste constante dans le cas d'un système isolé qui n'échange donc pas de matière avec son environnement.

Étude du mouvement : Référentiel et inertie

Référentiel

Un référentiel est un solide par rapport auquel on étudie un mouvement On prend souvent comme référentiel le solide Terre.

  • Le référentiel géocentrique (construit à partir des centres de la Terre et de trois étoiles lointaines qui paraissent fixes) est utilisé pour étudier le mouvement des satellites terrestres.
  • Le référentiel héliocentrique (construit à partir des centres du soleil et de trois autres étoiles) est utilisé pour étudier les voyages interplanétaires ou le mouvement des planètes autour du Soleil.

Un repère d'espace orthonormé, lié à un référentiel, est un système d'axes orthogonaux et normés, muni d'une origine O. Dans ce repère, on peut exprimer les coordonnées du mobile ponctuel étudié.

La trajectoire d'un mobile ponctuel est constituée par l'ensemble des positions successives occupées par le mobile au cours du temps. Pour calculer la vitesse v moyenne entre deux instants d'un solide, on utilise la formule suivante :

Vitesse moyenne (m/s) = distance parcourue (m) / durée du parcours (s)

Vecteur vitesse instantanée = dérivée du vecteur position par rapport au temps.

Ce vecteur est porté par la tangente à la trajectoire à la date considérée et a toujours le sens du mouvement.

Dans un référentiel galiléen, si la somme vectorielle des forces extérieures appliquées à un solide est nulle (solide pseudo-isolé) alors le centre d'inertie G de ce solide est soit au repos, soit animé d'un mouvement rectiligne uniforme et réciproquement.

Un solide peut donc se déplacer même si la somme des forces appliquées à ce solide soit nulle.

Dans un référentiel galiléen, si le vecteur vitesse du centre d'inertie d'un solide varie, alors la somme vectorielle des forces extérieures appliquées à ce solide n'est pas nulle et réciproquement. La direction et le sens de cette somme sont ceux de la variation du vecteur vitesse entre deux instants proches.

Dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquées à un solide est égale au produit de la masse M du solide par l'accélération de son centre d'inertie.

Inertie d'un corps

En physique, on appelle inertie d'un corps, dans un référentiel galiléen, une tendance de ce corps à conserver sa vitesse. En effet, lorsqu'il y a absence d'influences extérieures, on parle aussi de forces extérieures, alors tout corps que l'on considère comme ponctuel va perdurer dans un mouvement rectiligne uniforme.

Notons que l'on appelle aussi l'inertie, principe d'inertie ou encore loi d'inertie. Puis, lorsque Newton est arrivé, on l'appelle également première loi de Newton.

Elle s'énonce ainsi :

Un système isolé ou pseudo-isolé initialement au repos ou en mouvement rectiligne uniforme demeure dans son état.

On appelle référentiel galiléen tout référentiel au sein duquel le principe d'inertie est vérifié.

Même s'il n'existe aucun référentiel galiléen au sens strict. Il est cependant possible de considérer certains référentiels usuels comme galiléen si certaines conditions sont vérifiées :

  • Ainsi, le référentiel terrestre peut être considéré galiléen si on considère un mouvement dont la durée ne dépasse pas quelques minutes dans le but de s'affranchir du mouvement de rotation propre de la Terre.
  • Le référentiel géocentrique peut également être considéré comme étant galiléen si on considère un mouvement dont la durée ne dépasse quelques heures dans le but de s'affranchir du mouvement de rotation de la Terre autour du Soleil.
  • Le référentiel héliocentrique peut aussi être considéré comme étant galiléen car l'impact du mouvement de rotation du Soleil au sein de la galaxie est négligeable.

Newton et les corps célestes : Champs de gravitation et lois associées

Pourquoi la Lune n'entre-t-elle pas en collision avec la Terre ? C'est grâce à la force de gravitation que notre système solaire est ce qu'il est aujourd'hui.

Gravitation

La gravitation correspond à une force attractive qui s'exerce à distance entre deux corps qui ont une masse et cette force dépend :

  • De la distance : Plus la distance est grande, plus la force est petite.
  • De la masse des corps : Plus la masse est grande, plus la force gravitationnelle est grande.

Champ gravitationnel

En physique classique, on appelle champ gravitationnel, ou encore champ de gravitation, un champ qui est réparti dans l'espace et dû à la présence d'une masse qui est alors susceptible d'exercer une influence gravitationnelle sur tous les autres corps pouvant être présent à proximité immédiate ou non.

On peut démontrer que le champ gravitationnel créé en un point quelconque par un corps ponctuel dérive d'un potentiel scalaire dit newtonien.

En physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l'espace et dû à la présence d'une masse susceptible d'exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L'introduction de cette grandeur permet de s'affranchir du problème de la médiation de l'action à distance apparaissant dans l'expression de la force de gravitation universelle.

On peut interpréter le champ gravitationnel comme étant la modification de la métrique de l'espace-temps. L'approximation newtonienne est alors valable uniquement dans le cas où les corps présentent une vitesse faible par rapport à celle de la lumière dans le vide et si le potentiel gravitationnel qu'ils créent est tel que le quotient du potentiel gravitationnel sur le carré de la vitesse de la lumière dans le vide est négligeable.

On peut approcher le champ électrique et le champ gravitationnel. En effet, l'expression du champ et du potentiel ne sont différents que d'une constante. De plus, les principaux théorèmes de calculs, celui de la superposition ou de Gauss par exemple, peuvent s'appliquer dans les deux cas. Ce qui les différencie alors est le caractère attractif, donc entre deux charges de signe opposé, ou répulsif, donc entre deux charges de même signe, du champ électrique tandis que le champ gravitationnel ne peut être qu'attractif.

Principe de l'analogie

  • L'analogie repose sur la similitude des lois de Coulomb (électromagnétisme) et loi de Newton (gravitation).
  • Il est souvent inutile de faire les calculs de champs gravitationnels à partir de répartitions de masses, on procède plutôt par analogie avec les résultats connus de l'électrostatique.

La force d'interaction gravitationnelle, tout comme la force d'interaction électrostatique, est une force conservative. Ainsi, elles représentent toutes les deux le gradient d'une énergie potentielle. Dans ce cas, il est alors possible d'adapter absolument tous les calculs de champ et de potentiel étudiés dans le cadre du cours sur la distribution de masses dans le but de calculer le champ et le potentiel gravitationnels en un point définis de l'espace. Il en va de même avec le théorème de Gauss.

Remarque

Il peut être intéressant de mentionner que la force électrique fondamentale, également appelée force de Coulomb, peut être utilisée comme fondement de l'électrostatique. Ainsi, on peut déduire de ce fondement le théorème de Gauss.

C'est donc pour cela que l'on peut dire que la ressemblance formelle, c'est-à-dire les similarités des formules mathématiques, entre la force de Coulomb et la force gravitationnelle est une base solide permettant de fonder l'analogie entre les deux classes de phénomènes énoncés dans ce cours.

Ainsi, à partir de la force de Coulomb et par superposition, on peut être capable d'établir des expressions intégrales du champ électrique en fonction de la distribution de charge. Bien que ces calculs soient trop complexes pour être utiles dans les calculs analytiques, ils peuvent être très utiles afin de déterminer un champ électrique par résolution numérique, c'est-à-dire par ordinateur.

Notons qu'il est possible de démontrer ces formules en utilisant le théorème de superposition.

Théorème de Gauss

Le théorème de Gauss permet, en électromagnétisme, de calculer le flux d'un champ électrique à travers une surface qui est fermée et ce grâce à la connaissance des charges électriques que cette surface renferme.

Il s'énonce ainsi :

Le flux du champ électrique à travers une surface S fermée est égal à la somme des charges électriques contenues dans le volume V délimité par cette surface, divisée par la permittivité du vide.

Loi de Coulomb

Coulomb, un physicien français, a établi en 1758 que le champ doit varier comme le carré inverse de la distance entre les charges à une précision de 0,02 sur l'exposant avec l'aide d'un dispositif appelé balance de Coulomb. Cette balance est constituée d'un fil de torsion en argent sur lequel est fixé des matériaux chargés. Ainsi, la loi d'attraction entre deux charges ponctuelles notées q1 et q2 , fixes dans le référentiel défini et séparées par une distance r, se définit ainsi :

  • La force est dirigée selon la droite reliant les deux charges ;
  • Elle est attractive si les charges sont de signes opposée et répulsive sinon ;
  • Son intensité est proportionnelle aux valeurs de q1 et q2 et varie en raison inverse du carré de la distance r.

Il est alors possible de traduire ces caractéristiques en une formule exprimant la force exercée par q1 sur q2 :

    \[ \overrightarrow{ f _ { e } } = \frac { 1 } { 4 \pi \epsilon _ { 0 } } \frac { q _ { 1 } q _ { 2 } }{ r ^ { 2 } } \overrightarrow { e _ { r } } \]

Avec :

  •     \[ \overrightarrow { e _ { r } } \]

    le vecteur unitaire de la droite reliant q1 et q2 qui est dirigée dans le sens 1 vers 2

  •     \[ \epsilon _ { 0 } \]

    la permittivité diélectrique du vide

Ce qui peut rendre la compréhension de cette formule compliquée est la notion de force à distance. En effet, comment une charge peut savoir qu'une autre charge ponctuelle se trouve à une certaine distance d'elle et alors exercer sur force sur cette charge en fonction de la distance qui les sépare.

Dans ce cas, tout comme pour un champ gravitationnel, il peut être utile de séparer dans la loi de force ce qui dépend de la charge subissant la force et donc d'obtenir la relation suivante :

    \[ \begin{cases} \overrightarrow { f } = q _ { 2 } \left[ \frac { 1 } { 4 \pi \epsilon _ { 0 } } \frac { q _ { 1 } } { r ^ { 2 } } \overrightarrow { e _ { r } } \right] = q _ { 2 } \overrightarrow { E } \\ \overrightarrow{ E } = \frac { 1 } { 4 \pi \epsilon } \frac { q _ { 1 } }{ r ^ { 2 } } \overrightarrow { e _ { r } } \end{cases} \]

Avec :

  •     \[ \overrightarrow { E }  \]

    un champ électrique électrostatique créé à partie de la charge q1 au point où se trouve la seconde charge q2

Ainsi, avec cette relation, il est plus aisé d'interpréter l’existence d'une force à distance. En effet, la charge considérée comme "source", c'est-à-dire q1, crée en tout point de l'espace un champ électrique dont la forme est donnée par la relation exprimée ci-dessus, et une charge quelconque considérée comme "test" subira l'effet de ce champ sous la forme d'une force égale au produit de cette charge par le champ électrostatique. Dans ce cas, ce champ électrostatique apparaîtra comme la force entre deux particules ponctuelles fixes par unité de charge.

Exercices : Étude newtonienne de l'inertie

Exercice 1

Quand peut-on négliger les forces de frottement ? Expliquez pourquoi, dans cet exercice, il est possible ou non d'utiliser le principe d'inertie.

Un enfant, installé sur sa luge, descend une piste. Le système {luge+enfant}, assimilé à un solide, est animé d'un mouvement de translation. La portion AB est plane et fait un angle de 20° avec le plan horizontal. La portion CD est horizontale.

Entre A et D, la piste est verglacée (sans frottement) et entre D et E, la neige est molle (frottement important).

  • Caractériser les forces appliquées au système entre A et B.
  • Montrer qu'entre A et B, le mouvement de la luge est un mouvement de translation rectiligne accéléré.
  • Caractériser le mouvement de la luge entre C et D, puis entre D et E. (On ne se préoccupera pas de la valeur des forces)

Exercice 2

Gabriel monte sur un pèse-personne muni d'un bâton de masse négligeable. L'appareil indique 78 kg. Il appuie avec son bâton sur le pèse-personne. L'indication ne change pas.

Il appuie avec son bâton sur le sol, l'indication est de 61 kg.

  1. Gabriel est sur le pèse-personne avec son bâton mais n'utilise pas ce dernier.
    • Effectuer le bilan des forces exercées sur Gabriel et son bâton.
    • Effectuer le bilan des forces exercées sur le pèse-personne (on négligera le poids du pèse-­personne).
    • Quelle est la force mesurée par le pèse-personne ?
  2. Interpréter l'indication de la balance dans les deux autres situations :
    • Quand Gabriel appuie sur le pèse-personne avec le bâton ;
    • Quand il appuie sur le sol avec le bâton.

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (Aucun vote)
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide