Limites fonctions

Définitions

Calcul limite en un point fini par factorisation

1	Factoricor	1.	numáratour	ot 10	e dénominateur,	,	nuia aim	nlifion	10	nluc	noggiblo	1	fractio	
Ι.	ractoriser	16	numerateur	есте	e denommateur,	. 1	puis sim	pmer	ıе	prus	possible	$_{\rm Ia}$	пасио	ч

a)
$$\frac{x^2-2x+1}{1}$$

b)
$$\frac{x^2-2x+1}{2x^2-6x+4}$$

2. En déduire leur limite à droite et à gauche en 1 .

Property of Studeo LLC

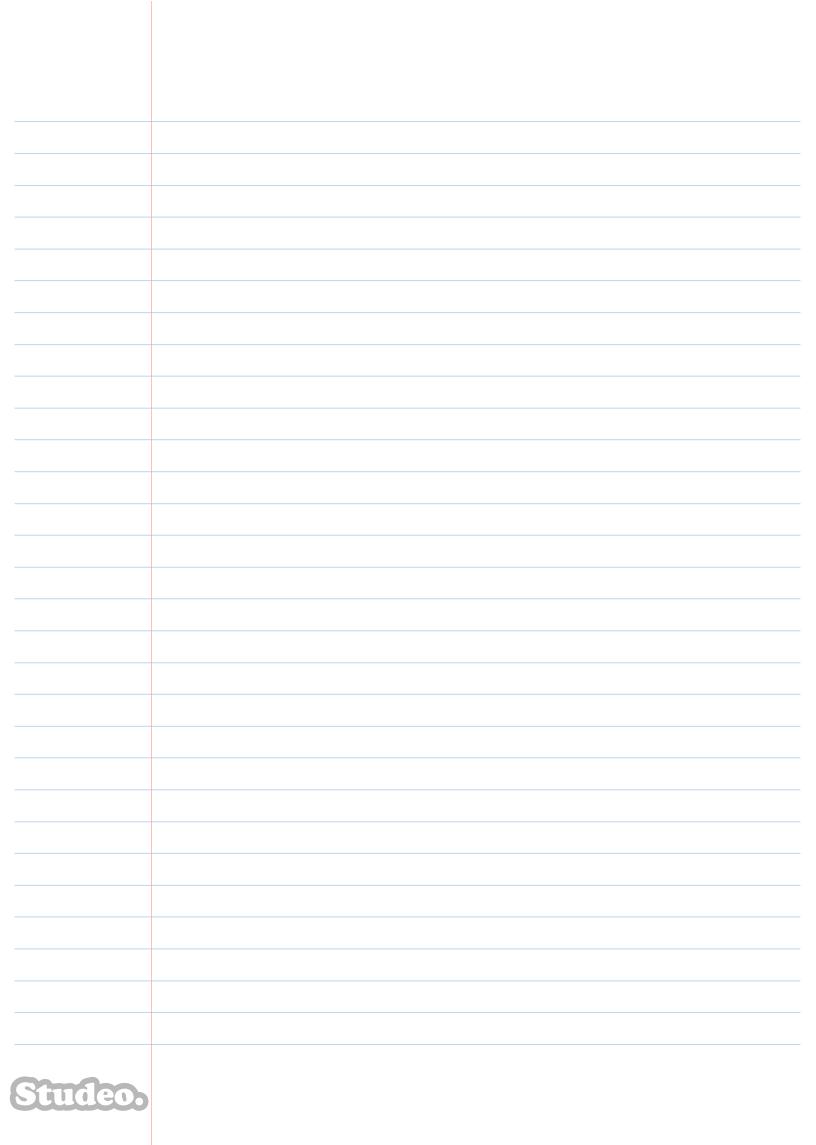
$$\frac{x^{1}-2x+1}{2x^{1}-6x+4} = \frac{(x-1)^{2}}{2(x^{2}-3x+2)}$$

Astuce #1

Pour un polynôme de degré 2, **Tester les** racines évidentes suivantes: 0, 1, -1, 2, -2

$$\Delta = 9 - 8 = 1 \Rightarrow x_1 = \frac{3-1}{2} = 1$$

$$\Rightarrow \frac{x_1}{2} = \frac{3+1}{2} = 2$$


$$\Rightarrow \frac{x^2 - 2x - 1}{2x^2 - (x + 4)} = \frac{(x - 1)^2}{2(x - 1)(x - 2)} = \frac{(x - 1)}{2(x - 2)}$$

- 1. Factoriser le numérateur et le dénominateur, puis simplifier le plus possible la fraction.

 - a) $\frac{x^2-2x+1}{x-1}$ b) $\frac{x^2-2x+1}{2x^2-6x+4}$
- $2. \ {\rm En}$ déduire leur limite à droite et à gauche en 1 .

On pourrait avoir besoin de savoir si c'est 0 ou 0. $x-1=0^{7}$ lim $x-1=0^{-1}$

