Quels sont les différents rayonnements que les éléments radioactifs peuvent produire ?

Les rayons alpha

Les rayons alpha (ou encore particules alpha) sont une forme de rayonnement émis par des particules hautement ionisées et peu pénétrantes. Elles sont constituées de deux protons et deux neutrons combinés en une particule identique au noyau d'hélium ; elles peuvent donc s'écrire He2+. La masse d'une particule alpha est de 6,644656 × 10-27 kg, ce qui équivaut à une énergie de 3,72738 GeV. Les particules alpha sont émises par des noyaux radioactifs comme l'uranium ou le radium par l'intermédiaire d'un processus nommé désintégration alpha. Ce processus laisse parfois le noyau dans un état excité ; l'émission d'un rayon gamma permet au noyau d'évacuer cet excès d'énergie et de retourner à l'état fondamental. Lorsqu'une particule alpha est émise, la masse atomique d'un élément diminue d'environ 4,0015 unités de masse atomique du fait de la perte de quatre nucléons. Ayant perdu deux protons, l'atome considéré voit son nombre atomique diminuer de deux, se transformant en un nouvel élément. Un exemple est la transformation du radium en gaz radon par désintégration alpha.

Un rayonnement alpha est un rayonnement peu pénétrant.

Comment se protéger des rayonnements nucléaires ? Le plomb peut bloquer certains types de rayonnement et est donc utilisé comme protection.

Superprof

Les rayons bêta

Les particules bêta sont issues d'une désintégration bêta.

Il s'agit d'un électron dans le cas d'une désintégration de type ß- et elle sera alors accompagnée d'un anti-neutrino électronique. Cette désintégration est provoquée par un excès de neutrons.

Dans le cas d'une désintégration ß+, il s'agit d'un anti-électron (ou positron) et elle sera accompagnée d'un neutrino électronique. Cette désintégration est provoquée par un excès de protons.

Un rayonnement bêta est pénétrant

Les rayons gamma

Le béton peut-il protéger de la radioactivité ? Le béton peut bloquer les rayonnements gamma à partir d'une certaine épaisseur. C'est pourquoi il est utilisé lors de la construction de centrale nucléaire.

Les rayonnements gamma sont produits par une désintégration gamma ou d'autres processus nucléaires ou subatomiques tels que l'annihilation d'une paire électron-positron. Ils possèdent une longueur d'onde très courte inférieure à 5 picomètres. La découverte des rayons gamma est due à Paul Villard.

Ce diagramme présente les différents genres de radiation ionisante et leur capacité à pénétrer la matière. Les particules alpha sont arrêtés par une simple feuille de papier tandis que les particules bêta sont stoppées par une feuille d'aluminium. Le rayonnement gamma quant  lui, très pénétrant est amorti quand il pénètre de la matière dense. Les rayons gamma peuvent être arrêtés avec quatre mètres de béton.

Récapitulatif sur les rayonnements

  • Radioactivité bêta : La radioactivité bêta est un type de désintégration radioactive où une particule bêta (électron ou positron) est émise. On parle de radioactivité bêta + quand un positron est émis mais on parle de radioactivité – quand c’est un électron qui est émis
  • Radioactivité alpha : La radioactivité alpha est un rayonnement provoqué par une désintégration alpha qui est une désintégration radioactive où un noyau atomique éjecte une particule alpha qui se transforme en un autre noyau dont le nombre de masse est diminué de 4 et le numéro atomique de 2 à cause de la particule alpha manquante qui est analogue au noyau d’hélium 4
  • Radioactivité gamma : La radioactivité gamma est un rayonnement provoqué par une désintégration gamma. Le plu souvent, ces désintégrations accompagnent des désintégrations alpha ou bêta. En effet, quand il émet un rayon alpha ou bêta, le noyau devient excité. Lors de l’émission d’un rayonnement électromagnétique gamma, le noyau peut donc redescendre à un état plus stable

La découverte de la radioactivité

On appelle radioactivité une réaction nucléaire spontanée au cours de laquelle un noyau atomique instable se désintègre en dégageant de l'énergie, sous forme d'un rayonnement électromagnétique, pour se transmuter en un noyau plus stable.

Le phénomène de la radioactivité fut découvert en 1896 par Henry Becquerel sur l'uranium. Il avait entreprit de découvrir si un sel d'uranium phosphorescent émettait, en plus de la lumière, des rayons X (découvert par le physicien allemand, Wilhelm Röntgen en 1895). Il  exposa ce sel au soleil avant de le placer à l'obscurité sur une plaque photographique. En étudiant ces plaques, il s'aperçut qu'elles étaient impressionnées même lorsque le sel d'uranium n'avait pas été exposé à la lumière du soleil. Il met également en évidence la présence de particules chargées, le matériau émet son propre rayonnement. Ce ne sont donc pas des rayons X, il nomme ces rayons, "rayons uraniques". Fin 1897, Marie Sklodowska-Curie qui était à l'époque étudiante choisit comme sujet de thèse l'étude de ce nouveau type de rayonnement. Elle entreprend de rechercher d'autres éléments pouvant produire un rayonnement semblable à celui du sel d'uranium phosphorescent. Elle découvre que des échantillons de minéraux d'uranium (la pechblende par exemple) sont plus actifs que l'uranium lui-même. En 1898, Marie Curie, aidée de son mari Pierre Curiesépare chimiquement les éléments les plus actifs et isole ainsi le polonium puis le radium. Elle donne, en rapport avec ce dernier élément, le nom de "radioactivité" au phénomène. En 1911, Marie Curie recevra le prix Nobel de chimie pour cette découverte ; c'est la seule femme à avoir reçue deux prix Nobel. En 1903, Pierre et Marie Curie ainsi qu'Henry Becquerel reçoivent le prix Nobel de physique pour la découverte de la radioactivité. Cette même année, des études menées par Henry Becquerel, Marie Curie, Paul Villard et Ernest Rutherford montrèrent l'existence de différents types de rayonnements, les rayonnements alpha (positifs), bêta (négatifs) et gamma (neutres). Ernest Rutherford découvrit également que la radioactivité s'accompagnait de la désintégration des éléments chimiques (transformation spontanée d'un élément en un autre), il énonça les lois fondamentales de ces transformations. E. Rutherford reçu en 1908 le prix Nobel de chimie.

Marie Skłodowska-Curie est une physicienne et chimiste d’origine polonaise. Elle est très connue pour sa découverte de la radioactivité naturelle et des éléments 84 et 88 : le polonium et le radium. Elle reçut de multiples prix et distinctions pour ses recherches. Elle reçut en 1903 le prix Nobel de physique et en 1911 le prix Nobel de chimie. C’était la première femme à recevoir ce genre de distinction et encore à ce jour elle est la seule à en avoir reçu deux.

Radioactivité et concepts proches

Quels sont les effets de la radioactivité ? A partir d'un certain seuil, les rayons radioactifs peuvent provoquer de graves brûlures.

La radioactivité correspond à un phénomène physique au cours duquel des noyaux atomiques considérés comme instables, on les appelle alors radionucléides ou encore radioisotopes, se transforment, et ce de façon spontanée, en d’autres atomes tout en émettant par la même occasion des particules de matières comme des électrons, des noyaux d’hélium ou encore des neutrons et en émettant de l’énergie sous la forme de photons et d’énergie cinétique.

On appelle cela une désintégration. On appelle alors l’émission de particules, qu’elles soient matérielle ou immatérielles, rayonnement et on est capable de parler de rayonnements ionisants car l’énergie des particules est telle qu’elle est capable d’entraîner la ionisation de la matière traversée. Il existe alors différents types de rayonnement que l’on listera un peu plus tard. La radioactivité présente des effets sur les organismes subissant des rayonnements ionisants, on parle alors d’irradiation.

Cependant, ces effets dépendent du niveau, mais aussi de la durée de l’exposition, qui peut être aiguë ou encore chronique, de la nature du rayonnement mais également de la localisation de la radioactivité. En effet, les effets ne seront pas les mêmes si l’exposition est interne que si l’exposition était externe ou encore en surface.

Les rayonnements provoqués par les substances radioactives sont très largement utilisés dans les différentes industrie, notamment en ce qui concerne le contrôle de pièce manufacturées, les soudures, l’usure ou même à faible dose en médecine afin de déterminer un diagnostic ou dans une visée thérapeutique afin de soigner les cancers. Dans tous les cas, il est évident qu’il est nécessaire de suivre des mesures de prévention, de protection mais également de contrôle qui resteront adaptés au niveau de radioactivité observé.

Défaut de masse d'un noyau

La masse d'un noyau est inférieure à la somme des masses des particules qui le composent. Le défaut de masse est cette différence. Elle est positive.

Défaut de masse :

    \[ \Delta m = Z \times m _ { p } + \left( A - Z \right) \times m _ { n } - m _ { \text { noyau } } \]

Energie de liaison

Relation d'Einstein

Le principe d'équivalence (1905), énergie-masse sont deux grandeurs proportionnelles et que de la masse peut se convertir en énergie et inversement. Toutes particules possèdent du fait de sa masse une énergie potentielle de repos.

    \[ E = m \times c ^ { 2 } \]

Energie de liaison

Elle est définie comme étant l'énergie qu'il faut fournir au noyau pour le dissocier en nucléons isolés et immobiles.

    \[ E _ { \text { noyau } } + E _ { l } = E _ { \text { proton } } + E _ { \text { neutron } } \]

    \[ E _ { l } = E \times m _ { p } \times c ^ { 2 } + \left( A - Z \right) \times m _ { n } \times c ^ { 2 } - m _ { \text { noyau } } \times c ^ { 2 } \]

    \[ E _ { l } = c ^{ 2 } \times  \left( \left( Z \times m _ { p } + \left( A - Z \right) \times m _ { n } \right) - m _ { \text { noyau } } \right) \]

    \[ E _ { l } = \Delta m \times c ^ { 2 } \]

Energie de liaison par nucléon

Un nucléon correspond à un terme générique faisant référence aux différents composants d'un noyau atomique. En effet, par nucléon on sous-entend le terme proton et neutron qui sont tous deux ce qu'on appelle des baryons. De plus, il peut être intéressant de se souvenir que le nombre de nucléons d'un atome est, de façon générale, noté A et appelé nombre de masse.

C'est l'énergie qu'il faut fournir au noyau pour le dissocier. Ces énergies de liaisons peuvent être calculées pour chaque noyau et on peut calculer pour chaque noyau son énergie de liaison par nucléon.

La décroissance radioactive

Quelque soit le radioisotope, il a autant de chance qu'un autre radioisotope de la même espèce de se désintégrer à un instant t. Il faut néanmoins savoir que la désintégration ne dépend pas des condition physico-chimique dans lesquels le nucléide étudié se trouve. En effet, on parle de la loi de désintégration radioactive comme étant une loi statique. La loi s'énonce ainsi : Soit N(t) le nombre de radionucléides d'une espèce donnée présents dans un échantillon à un instant t quelconque. Puisque la probabilité de désintégration d'un radionucléides quelconque ne dépend ni du milieu qui l'entour, ni de la présence d'autres espèces de radionucléide, le nombre total de désintégration, noté dN, pendant un intervalle de temps dt est proportionnel au nombre N de radionucléide de la même espèce présents mais aussi proportionnel à la durée dt de l'intervalle de réaction. On obtient alors la formule :

    \[ \text { d} N = - \lambda \times N \times \text{ d} t \]

On peut observer le signe - puisque le nombre N de radionucléides diminue au cours du temps. Si on intègre l'expression obtenue précédemment, on trouve alors la loi de décroissance exponentielle du nombre N(t). Ainsi, si on note N0 le nombre de radionucléides présents à l'instant t = 0, on obtient l'expression suivante :

    \[ N \left( t \right) = N _ { 0 } \times e ^{ - \lambda \times t } \]

Si on note t1/2 la demie vie de l'élément étudié, il est possible d'obtenir l'expression suivante :

    \[ \lambda = \frac { \ln \left( 2 \right) } { t _ { \frac { 1 } { 2 } } } \]

Activité d'une source

La notion d'activité est étroitement liée avec la décroissance radioactive. En effet, l'activité d'une source correspond à l'expression du nombre de désintégrations par secondes d'un atome composé d'un certain nombre de noyaux radioactifs. Cette grandeur s'exprime habituellement en becquerels de symbole Bq. On peut donc en déduire un taux de désintégration des noyaux atomiques. Cependant, l'utilisation de cette unité pose parfois des problèmes. En effet, le becquerel est une unité petite. Par exemple, un élément radioactif dont la durée de demie-vie est d'un million d'années,  une mole de cet élément aura une activité de 20 x 109 Bq.

Pour un échantillon de noyaux radioactifs, le temps de demi-vie est la durée au bout de laquelle la moitié des noyaux présents à un instant t se soit désintégrée.

Pour rappel, il faut des millions de Becquerels pour que cela devienne dangereux pour l'Homme. Dans le cas où les radioisotopes sont dans un mélange, plus la demie-vie de celui-ci est courte et plus son activité massique sera forte.

Datation

Comment connait-on l'âge de notre planète ? Grace à la datation, il est possible de connaître l'âge de la planète Terre.

On appelle datation radiométrique, ou encore radiochronologique, toute méthode de datation absolue utilisant la variation régulière au cours du temps de la proportion de radioisotopes dans certains corps. Très utilisées par les géologues, la plus connue reste la datation au carbone 14 mais aussi la technique Rubidium/Strontium.

Elle permet de dater les objets anciens en mesurant leur activité. Si on connaît l'activité d'une source à un instant présent, si on connait l'activité initiale on peut en déduire la durée écoulée depuis l'instant initial.

Les réactions nucléaires

La fission nucléaire

La fission spontanée est un phénomène de désintégration radioactive selon lequel un noyau lourd d’un atome se divise pour former au moins deux noyaux plus petits

Plus précisément, la fission est une réaction nucléaire au cours de laquelle un noyau père lourd se scinde en noyau plus léger sous l'impact d'un neutron. Les noyaux qui peuvent subir la réaction de fission sont des noyaux dits fissiles.

La réaction de fission libère deux ou trois autres neutrons qui vont pouvoir encore à leur tour casser d'autres noyaux, c'est ce qu'on appelle une réaction en chaîne. Elles ne sont pas contrôlées dans les bombes atomiques : Bombe A.

Une bombe A, connue également sous le nom de bombe atomique, bombe nucléaire ou encore bombe à fission est une bombe nucléaire qui tire son énergie de la fission d’éléments radioactifs comme le plutonium ou l’uranium. Ce fut les premières bombes atomiques ayant servi d’armes nucléaires lors de la Seconde Guerre mondiale, mais aussi les seules bombes ayant été utilisés lors de conflits. Little Boy et Fat Man, les bombes nucléaires de l’armée américaine ayant touché respectivement Hiroshima et Nagasaki en sont deux exemples Une bombe H, connue sous les noms de bombe à hydrogène, bombe à fusion ou encore bombe thermonucléaire est une bombe nucléaire qui tire son énergie de la fusion de noyaux légers comme ceux de l’hélium ou du deutérium par exemple

La fusion nucléaire

Réaction nucléaire au cours de laquelle des noyaux légers s'unissent pour former un noyau plus lourd. Le type de réaction qui a lieu sur les étoiles en général est une réaction qui n'est pas contrôlée. Pour amorcer cette réaction, il faut des températures très élevées (thermonucléaires).

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (4,00/ 5 pour 1 votes)
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide
avatar