Chapitres
- Définition de l'écriture scientifique
- Comment écrire un nombre quelconque en notation scientifique ?
- A quoi sert la notation scientifique ?
- Multiplication des notations scientifiques
- Diviser des notations scientifiques
- Ajouter ou soustraire des notations scientifiques
- La notation scientifique en vocabulaire informatique
- Utilisation de la notation scientifique
- Notation ingénieur
- Conclusion
Définition de l'écriture scientifique
Une valeur x est exprimée en notation scientifique lorsque qu'elle s'écrit sous la forme
x = a x 10b
où :
- a est un nombre décimal dont la valeur absolue est supérieure ou égale à 1 et strictement inférieure à 10 (en résumé : 1<|a|< 10),
- b est un entier relatif (positif pour les valeur supérieures à 1 et négatif pour celles inférieures à 1). b ne peut pas être un nombre décimal ou un quotient.
Toute autre notation d'une valeur ne peut pas être considérée comme notation scientifique. C'est une notation précise et aussi précieuse que les unités du système international.
Quelques exemples
- Ces nombres sont écrits en notation scientifique : 1,00 x 105 2 x 100 7,2 x 10-5 -5,06 x 1015
- Ces nombres ne sont pas écrits en notation scientifique : 10 x 106 ,car 10 n'est pas strictement inférieur à 10. Sa notation scientifique est 10 x 106 = 1 x 107 0,956 x 104 ,car 0,956 n'est pas strictement supérieur à 1. Sa notation scientifique est 0,956 x 104 = 9,56 x 103 -15,6 x 10-3 ,car 15,6 n'est pas strictement inférieur à 10. Sa notation scientifique est -15,6 x 10-3 = -1,56 x 10-2
Comment écrire un nombre quelconque en notation scientifique ?
Il suffit de faire apparaître une partie décimale comprise entre 1 et 10 puis éventuellement de simplifier les puissances de dix. Exemple pour un nombre supérieur à 1:
1256,8 | = 1256,8 x 10 -3 x 10 3 = 1,2568 x 10 3 |
Il en est de même pour les nombres négatifs. Comme précisé ci-dessus il faut que la valeur absolue de la partie décimale soit comprise entre 1 et 10. Ainsi si le nombre de base est négatif, le résultat sera le même, précédé d'un signe négatif. L'exemple ci-dessus en négatif donnerait :
- 1256,8 | = - 1256,8 x 10 -3 x 10 3 = - 1,2568 x 10 3 |
Exemple pour un nombre inférieur à 1:
0,065 | = 0,065 x 10 2 x 10 -2 = 6,5 x 10 -2 |
Exemple pour un nombre incluant une puissance de 10
256,2 x 10 5 | = 265,2 x 10 -2 x 10 2 x 10 5 = 2,652 x 10 2 x 10 5 = 2,652 x 10 2+5 = 2,652 x 10 7 |
A quoi sert la notation scientifique ?
C'est une notation pratique pour exprimer des valeurs très grandes (par exemple des dimensions astronomiques) ou très petites (par exemple des dimensions microscopiques). La partie décimale étant comprise entre 1 et 10, la comparaison se fait au niveau de la puissance de 10, qui est facilement comparable. Il est facile de voir des valeurs ayant des rapports 100, 10000 entres elles et ainsi réussir à les placer les unes par rapport aux autres facilement pour en déduire des ordres de grandeurs. Elle permet :
- de comparer facilement différentes valeurs,
- d'obtenir facilement l'ordre de grandeur d'une valeur,
- Il peut être indispensable de l'utiliser pour respecter les nombres significatifs d'une valeur.

Multiplication des notations scientifiques
La notation scientifique est particulièrement pratique pour réaliser des multiplications : il suffit de regrouper d'une part les parties décimales et d'autre part les puissances de dix puis de les calculer séparément. Attention, le produit de deux notations scientifiques n'est pas forcément une notation scientifique ! Si c'est le cas, il faudra faire en sorte que la partie décimale soit entre 1 et 10 en valeur absolue et ajuster la puissance de 10 en conséquence. Exemple:
2,5 x 10 3 x 4,0 x 10 6 x 3,0 x 10 -2 | = 2,5 x 4,0 x 3,0 x 10 3 x 10 6 x 10 -2 = 30 x 10 3+6-2 = 30 x 10 7 = 3,0 x 10 1 x 10 7 = 3,0 x 10 8 |
Diviser des notations scientifiques
Comme pour la multiplication il suffit de regrouper d'une part les parties décimales et d'autre part les puissances de dix (en des fractions distinctes) puis de les calculer séparément. De même, le résultat obtenu ne sera pas forcément en notation scientifique, il est une fois de plus nécessaire de ré-ajuster la partie décimale de façon à ce qu'elle soit, en valeur absolue, comprise entre 1 et 10 et d'effectuer les modifications nécessaires au niveau de la puissance de 10. Exemple:
(2,5 x 108 x 8,0 x 104) / (4,0 x 102) |
= 5,0 x 1010 |
Ajouter ou soustraire des notations scientifiques
L'addition ou la soustraction est plus délicate car elle réclame d'être très attentif aux chiffres significatifs des différents termes. Il est conseillé de commencer par écrire les différents termes du calcul en utilisant la même puissance de dix (de préférence la plus élevée) avant d'écrire cette dernière en facteur des autres termes. Tout comme précédemment, le résultat obtenu ne sera pas obligatoirement en notation scientifique. Si c'est le cas, une autre transformation sera nécessaire. Exemple:
2,556 x 10 5 + 6,2 x 10 3 - 2,1 x 10 2 | = 2,556 x 10 5 + 0,062 x 10 5 – 0,0021 x 10 5 = (2,556 + 0,062 – 0,0021) x 10 5 = 2,620 x 10 5 |
La notation scientifique en vocabulaire informatique
Utilisation de la notation scientifique
La notation scientifique permet d'exprimer facilement de très grandes valeurs autant que de très petites. C'est donc un outil de comparaison très puissant, pouvant exprimer des valeurs microscopiques comme macroscopiques. Le tableau suivant répertorie les puissances de 10 les plus fréquemment utilisées et leurs nomenclatures.
Puissance de 10 | -9 | -6 | -3 | 2 | 1 | 1 | 2 | 3 | 6 | 9 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
Préfixe | Nano | Micro | Milli | Centi | Déci | Déca | Hecto | Kilo | Méga | Giga | Téra |
Symbole | n | µ | m | c | d | da | h | k | M | G | T |
Notation ingénieur
2,547 x 104 ±0.1 | = 25,47 x 103 ±0.1 x 10-1 = 25,47 x 103±0.01 |
Conclusion
La notation scientifique est une façon d'écrire une valeur de façon à la rendre plus lisible et facilement comparable à d'autres valeurs. L'expression via les puissances de 10 simplifie les calculs de multiplication et de division. Ecrire tous ses résultats en notation scientifique aide grandement la précision pour les chiffres significatifs et ainsi diminue le risque d'incertitudes menant à des erreurs. Dans le monde de la recherche, la notation scientifique est omniprésente, elle permet à des chercheurs du monde entier de comparer leurs résultats.
La plateforme qui connecte profs particuliers et élèves
Si vous désirez une aide personnalisée, contactez dès maintenant l’un de nos professeurs !
Comment trouver la notation scientifique de
3,4×10puissance-2+5,2×10puissance -3
Si vous plaît aide moi à résoudre une équation chimique et les faction
et des calculés sentifique et tous les équation chimique comment en fait pour simplifier une faction
Bonjour, nos talentueux professeurs sont disponibles pour toute aide personnalisée, n’hésitez pas à les solliciter 🙂
bonjour, j’aimerai savoir comment transformer cette écriture scientifique : 1,2x10puissance -4 en nombre décimal. merci!
a) 122×10−3×𝑜,𝑜362×102
Bonjour, nous ne faisons pas les devoirs des élèves mais n’hésitez pas à contacter l’un de nos professeurs pour une aide personnalisée 🙂