électromagnétique ?

Milieu transparent

Un milieu transparent est caractérisé par son indice de réfraction.

L'indice de réfraction d'un milieu transparent correspond au rapport entre la célérité d'une onde se propageant dans le vide et sa célérité dans le milieu considéré.

    \[ n = \frac { c } { v } \]

Avec

  • n correspondant à l'indice de réfraction du milieu transparent et qui est une grandeur sans unité ;
  • c correspondant à la célérité de l'onde dans le vide. La célérité est égale à 3.108 m.s-1 ;
  • Et v correspondant à la célérité de l'onde dans le milieu transparent qui s'exprime en m.s-1.

Un milieu est dit dispersif si la célérité d'une onde lumineuse monochromatique qui se propage dans ce milieu dépend de sa fréquence (donc de sa longueur d'onde dans le vide).

L'indice de réfraction d'un milieu dispersif dépend donc de la fréquence de l'onde qui s'y propage.

Les meilleurs professeurs de Physique - Chimie disponibles
Greg
5
5 (120 avis)
Greg
120€
/h
Gift icon
1er cours offert !
Houssem
4,9
4,9 (111 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (75 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (46 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (85 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chrys & chris
5
5 (130 avis)
Chrys & chris
78€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (94 avis)
Antoine
50€
/h
Gift icon
1er cours offert !
Philippe
4,9
4,9 (31 avis)
Philippe
32€
/h
Gift icon
1er cours offert !
Greg
5
5 (120 avis)
Greg
120€
/h
Gift icon
1er cours offert !
Houssem
4,9
4,9 (111 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (75 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (46 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (85 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chrys & chris
5
5 (130 avis)
Chrys & chris
78€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (94 avis)
Antoine
50€
/h
Gift icon
1er cours offert !
Philippe
4,9
4,9 (31 avis)
Philippe
32€
/h
Gift icon
1er cours offert !
C'est parti

Propagation d'une onde

Comment se propagent les ondes ?
Les ondes peuvent se propager sur de longues distances, parfois même sur plusieurs dizaines de kilomètres, c'est le cas des ondes radio par exemple.

Une onde se propage dans un milieu qui le lui permet car la propagation résulte de la mise en mouvement d’une particule dans le temps mais aussi dans l’espace  par rapport au milieu. Cela est possible uniquement si la source est dans un état vibratoire.

On peut caractériser la propagation d’une onde par sa vitesse de propagation à l’aide la formule suivante :

    \[ c = \lambda \times f \]

Avec :

  • c la célérité de l’onde ;
  • λ la longueur d’onde ;
  • f la fréquence de l’onde.

Remarque : La vitesse de la lumière est de 300 000 km.s-1 et la célérité d’une onde sonore est de 344 m.s-1

La fréquence d'une onde ne dépend que de la fréquence de la source mais ne dépend pas de la fréquence de l'onde.

La célérité d'une onde v dépend du milieu de propagation.

  • Elle est toujours inférieure à celle de cette onde dans le vide c . v < c .
  • n est toujours inférieur à 1 . n < 1

Dans le vide, la célérité de la lumière est c = 299 792 458 m.s-1 (on retiendra c = 3.108 m.s-1).

La célérité de la lumière dans le vide ne dépend pas de la fréquence de l'onde.

La célérité de la lumière dans l'air est pratiquement égale à sa célérité dans le vide

Phénomène de diffraction

C'est un phénomène qui est propre aux ondes qui se manifestent lorsqu'une onde rencontre un obstacle ou une ouverture de faible dimension.

La modification de la forme d'onde on obtient des ondes circulaires. L'onde se propage derrière l'obstacle, il n'y a pas de zone d'ombre.

Le phénomène de diffraction se manifester lorsqu'une onde rencontre une ouverture, obstacle, dont les dimensions sont du même ordre de sa longueur d'onde. Ce phénomène est d'autant plus marqué que a est petit.

Propagation d'une onde face à un obstacle

Comment attirer les ondes ?
Les paraboles ont une forme bien particulière qui leur permettent de concentrer les ondes.

On appelle fentes, ou interférences, de Young toute expérience consistant à faire interférer deux faisceaux de lumière qui sont issus d'une même source. Cette interférence est produite grâce au passage de la lumière dans deux petits trous qui auront été percé au sein d'un plan opaque. On observe alors pour résultat, sur un écran disposé face à ces fentes, un motif de diffraction représenté par une zone où des franges sombres et des franges illuminées sont disposées en alternance.

Cette expérience permet ainsi de mettre en lumière la nature ondulatoire des ondes électromagnétiques. Lorsque cette même expérience est réalisée avec de la matière, comme des atomes, des molécules ou des électrons, il est possible d'observer ce même comportement. On peut ainsi observer la dualité onde-particule puisque les interférences permettent de montrer que la matière présente également un comportement ondulatoire bien que les impact sur l'écran démontre un comportement particulaire

Dispersion des ondes

Un milieu est dispersif pour les ondes si la vitesse de propagation de l'onde dans le milieu dépend de sa fréquence de dispersion.

Remarque : L'air n'est pas un milieu dispersif pour les ondes sonores car les sons graves et aigus (leur fréquence) s'y propagent à la même vitesse.

Remarque : L'eau est un milieu dispersif pour les ondes à la surface de l'eau.

La loi de Snell-Descartes

Définition : La réfraction de la lumière correspond au changement de direction du rayon lumineux lorsque celui-ci traverse une surface séparant deux milieux d'indices de réfraction différents.

En effet, la loi de Snell-Descartes de la réfraction exprime le changement de direction d'un faisceau lumineux lors de la traversée d'une paroi qui sépare deux milieux différents. Il faut d'abord savoir que chaque milieu est caractérisé par sa capacité à « ralentir » la lumière.

On modélise cette caractéristique par son indice de réfraction n qui s'exprime sous la forme :

    \[ n = \frac { c } { v } \]

v est la vitesse de la lumière dans ce milieu et c est la vitesse de la lumière dans le vide (souvent arrondie à 3.108 m.s-1

A quelle vitesse se déplace la lumière ?
La lumière est l'onde électromagnétique qui se déplace le plus vite.

Il est important de savoir que :

  • Le rayon lumineux est dit incident avant d'avoir rencontré la surface réfractante (appelée dioptre), il est dit réfracté après avoir rencontré cette dernière.
  • Le point de rencontre du rayon incident et du dioptre est appelé point d'incidence.
  • Le plan contenant le rayon incident et la normale au dioptre, au point d'incidence est dit plan d'incidence.
  • L'angle orienté i1 pris entre la normale au point d'incidence et le rayon incident est dit angle d'incidence.
  • L'angle orienté i2 pris entre la normale au point d'incidence et le rayon réfracté est dit angle de réfraction.
  • Les angles i1 et i2 sont positifs si ils sont orientés dans le sens trigonométrique (sens inverse des aiguilles d'une montre), négatifs sinon.

On prend n1 l'indice de réfraction du milieu dans lequel se propage le rayon incident et n2 celui du milieu dans lequel se propage le rayon réfracté.

Pour pouvoir énoncer la loi de la réfraction, il faut que le rayon réfracté, le rayon incident et la normale (au dioptre) soient dans un même plan qui est appelé le plan d'incidence et que le rayon incident et le rayon réfracté soient situés de part et d'autre de la normale.

Lorsque n> n2 (et respectivement n< n2) le rayon réfracté (et respectivement : incident) se rapproche plus rapidement du dioptre que le rayon incident (ou réfracté). Cependant, il existe un cas particulier où le rayon réfracté (ou incident) se retrouve mathématiquement sur le dioptre (sa limite) : il y a alors réflexion totale.

Exemple de réfraction observable dans la nature : les mirages

Explication scientifique du phénomène

La réfraction atmosphérique correspond à un phénomène optique consistant en une trajectoire non rectiligne de la lumière lorsque celle-ci traverse l'atmosphère. Cela est principalement dû à une variation de la densité de l'air avec l'altitude.

L’atmosphère est la couche de gaz qui entoure la Terre. Cette dernière joue un rôle de protection en nous protégeant de ce qui se trouve au delà, dans l’espace, comme les rayons du soleil ou les corps étrangers. L’air que contient l’atmosphère est constitué à 78 % de diazote, de 21 % de dioxygène et le dernier pourcent représente une multitude d’autres gaz tels que le méthane, l’ozone, le dioxyde de carbone, l’argon, néon, krypton, xénon, etc.

Ainsi, pour tous les objets dits immergés dans l'atmosphère, le phénomène se renomme réfraction terrestre. Ce sont d'ailleurs ces réfractions terrestres qui conduisent aux mirages mais aussi aux effets de miroitement et d'ondulation en ce qui concerne les objets lointains.

De ce fait, en astronomie d'observation, la réfraction atmosphérique peut provoquer des erreurs en ce qui concerne l'évaluation de la position angulaire réelle de l'astre qui est observé. En effet, cet astre sera observé plus haut dans le ciel qu'il ne l'est dans sa position réelle. C'est pour cela qu'il est nécessaire, voire obligatoire, d'observer une correction de hauteur, également appelé de réfraction atmosphérique.

Cependant, il faut savoir que ce phénomène ne se contente pas d'affecter les rayons lumineux mais, de façon plus générale, il impacte toutes les ondes électromagnétiques. De fait de sa relation avec la longueur d'onde, on appelle cela le phénomène de dispersion, la lumière bleue sera plus fortement affectée par le phénomène que le serait la lumière rouge. C'est donc pour cela que, à cause de leur spectre, certain objets astronomiques peuvent voir les images en haute résolution s'étaler.

Notons que la lumière verte peut, en partie, être interprété par la réfraction atmosphérique mais aussi par la dispersion.

Un autre phénomène bien connu, l'observation du Soleil sous forme oblongue -donc légèrement aplati- lorsqu'il est à l'horizon, est un autre phénomène provoqué par la réfraction atmosphérique. Ce phénomène est d'ailleurs également observable pour la Lune.

Notons cependant que la réfraction atmosphérique est beaucoup plus importante pour tout objets proche de l'horizon par rapport aux objets qui seront plus près du zénith. C'est pour cela que les astronomes, dans le but de limiter les effets de la réfraction atmosphérique, préfèrent l'observations des objets lorsqu'ils se situent à leur point culminant de leur trajectoire dans le ciel. Mais c'est également pour cela que les marins, afin de se guider, ne visent pas les étoiles proches de l'horizon mais plutôt celles qui se trouvent au moins à 20° au-dessus de cet horizon.

Malgré tout, s'il n'est pas possible d'éviter les observations proches de l'horizon, il est tout à fait possible, sur certains instruments d'optique, de compenser les décalages observés à cause de la réfraction atmosphérique mais également ceux à cause de la dispersion.

Il faut tout de même savoir que la réfraction atmosphérique dépend également de la pression atmosphérique et également de la température. C'est pour cela que les instruments permettant de corriger les effets précédemment cités causés par la réfraction atmosphérique et la dispersion se doivent d'être technologiquement complexe. De ce fait, leur coût élevé minimise leur expansion.

Le problème est encore plus ancré dans le cas où la réfraction atmosphérique est non-homogène, principalement à cause de la présence de turbulences dans l'air. Ce sont ces mêmes turbulences qui provoquent d'ailleurs le phénomène de scintillation des étoiles.

Une formule déterminée empiriquement

De nombreuses formules existent dans le but de calculer la réfraction pour une hauteur définie.

Voici l'une des formules proposées avec :

  • R la réfraction ;
  • Et h la hauteur vraie en degrés de l'astre considéré.

    \[R = \frac { 1,02 } { \tan \left( h + \frac { 10,3 } { h + 5,11 } \right) } \]

Notons que cette formule suppose que l'observation est effectuée au niveau de la mer, à une pression atmosphérique de 1010 millibars, et pour une température de 10 °C.

Le cas des mirages

Qu'est-ce q'une oasis ?
Lorsqu'on se déplace dans le désert, il arrive parfois qu'on soit en proie à des hallucinations. On croit alors voir des oasis au milieu du sable.

Comme vu précédemment, les mirages correspondent à un phénomène optique découlant de la déviation des faisceaux lumineux par des superposition de couchers d'air ayant des températures différentes. On se trouve alors dans le cas d'une propagation anormale de la lumière au sein d'une atmosphère dans laquelle la température, la pression ainsi que l'humidité restent constante verticalement selon la normale. Ainsi, la déviation des rayons lumineux peuvent donner l'impression que l'objet observé se situe autre que sa localisation réelle.

De ce fait, il serait incorrect de définir un mirage comme une illusion d'optique ou encore comme une hallucination : il est possible de photographier un mirage ! En effet, il s'agit plutôt d'une déformation mentale d'une image provoquée par une interprétation fausse du cerveau.

Le cerveau va ensuit interpréter les mirages observer comme des images qui lui sont connues :

  • Les mirages dits inférieurs peuvent prendre l'aspect d'étendue d'eau ;
  • Les Fata Morgana peuvent, quant à elle, ressembler à des château ou autres constructions complexes.

Notons également qu'il existe trois catégories différentes de mirages :

  1. Les mirages supérieurs ;
  2. Les mirages inférieurs ;
  3. Et les Fata Morgana, qui correspondent à des mirages plus complexes composés de plusieurs images superposées l'une à l'autre.

Principe de la réfraction de l'air

Nous avons vu précédemment que les mirages et donc la réfraction atmosphérique étaient dû à la déviation des rayons lumineux par des couches d'air de température différentes.

En effet, au sein de ces couches, l'indice de réfraction de l'air n'est pas constante puisque celui-ci peut évoluer en fonction de la température, de la pression atmosphérique mais aussi en fonction de l'humidité et de la composition de l'air.

De ce fait, les couches d'air froid sont plus denses que les couches d'air chaud et leur indice de réfraction est donc plus élevé puisque celui-ci évolue de façon proportionnelle à la pression mais de façon inversement proportionnelle à la température.

La superposition de couches d'air de plus en plus chaudes ou, au contraire, de plus en plus froides, va provoquer la création d'un gradient de température mais aussi de pression et par conséquence d'indice de réfraction pour l'air.

>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 4,50 (2 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !