Rappel : les connaissances à avoir avant le début du cours

Pourquoi ne faut-il pas se contenter du cours donner par le professeur ?
Il est toujours intéressant d'approfondir ses connaissances. Pour cela, vous pouvez utiliser des livres ou encore les différents cours que nous mettons à votre disposition.

Système de deux points matériels

  • Théorèmes de la quantité de mouvement, du moment cinétique et de l'énergie cinétique pour un système de 2 points matériels
  • Énergie potentielle d'interaction, énergie mécanique
  • Cas du système isolé : propriétés de conservation, réduction du problème à 2 corps en un problème à un corps : grandeurs cinétiques barycentriques du système, mobile réduit : masse réduite, position, force "subie".

De la mécanique à la thermodynamique, modèle du GPM

  • Hypothèses de la théorie cinétique des GPM
  • Définition cinétique de la pression du GPM (calcul utilisant le modèle simplifié pour la distribution des vitesses : vitesses des atomes égales à la vitesse quadratique moyenne et 6 "direction + sens" possibles et équiprobables)
  • Définition cinétique de la température
  • Équation d'état du GPM
  • Énergie interne du GPM
  • Extension du modèle au GP polyatomique
  • Limites du modèle GP
  • Gaz réels : hypothèses du GP mises en défaut, modèle de Van der Waals, développement du viriel

Notions de statique des fluides (en question de cours seulement)

  • Définition de la statique des fluides
  • Définition de la pression et relation fondamentale de la statique des fluides pour un fluide dans un champ de pesanteur uniforme
  • Cas du liquide : modèle du fluide homogène incompressible
  • Cas du gaz : modèle du GP isotherme pour décrire l'atmosphère
  • Poussée d'Archimède
  • Spectre de l'atome d'hydrogène
  • Description du spectre d'émission, formule de Ritz
  • Interprétation de Bohr
  • Diagramme énergétique de l'atome d'hydrogène

La poussée d'Archimède

Pourquoi l'air chaud est-il moins dense que l'air froid ?
Pour comprendre pourquoi les montgolfière volent, il faut s'intéresser à la poussée d'Archimède !

La poussée d'Archimède est un phénomène physique qui décrit le comportement de tout corps plongé dans un fluide qu'il soit liquide ou gazeux soumis à un champ de gravité.

Elle est nommée ainsi en l'honneur d'Archimède de Syracuse, un très grand scientifique grec de 200 avant J.-C.

Elle est causée par l'augmentation de la pression du fluide avec la profondeur. Comme la pression exercée sur la partie basse du corps est supérieure à celle exercée sur la partie haute, le corps est poussé verticalement vers le haut.

Voici la formulation d'origine de cette loi physique :

Tout corps plongé dans un fluide au repos, entièrement mouillé par celui-ci ou traversant sa surface libre, subit une force verticale, dirigée de bas en haut et opposée au poids du volume de fluide déplacé ; cette force est appelée poussée d'Archimède.

Pour que le théorème s'applique il faut que le fluide immergeant et le corps immergé soient au repos. Il faut également qu'il soit possible de remplacer le corps immergé par du fluide immergeant sans rompre l'équilibre.

Voici l'équation qui en résulte :

    \[ \overrightarrow { P } _ { A } = M _ { f } \overrightarrow { g } \]

Avec :

  • Mf< la masse du fluide contenu dans un volume V et déplacé ;
  • g la valeur du champ de pesanteur, de 9,81 N/kg à la surface de la Terre.
Quelques exemples

La poussée d'Archimède intervient dans de nombreux cas de notre vie de tous les jours.

Par exemple, c'est la poussée d'Archimède qui fait qu'on ne coule pas lorsque l'on fait la planche sur l'eau. C'est aussi grâce à elle qu'un glaçon flotte à la surface d'un verre même lorsqu'il fond.

La poussée d'Archimède est aussi très utile à de nombreux appareils flottant ou volant. C'est grâce à elle que les bateaux ne coulent et que les sous-marins peuvent gérer leur profondeur. Les ballons dirigeables et les montgolfières peuvent aussi voler dans le ciel grâce à la poussée d'Archimède et au gaz moins dense que l'air qu'ils contiennent.

Structure électronique des atomes

Comment a-t-on classifié les atomes ?
Les atomes sont composés de neutrons, de protons et d'électrons mais doit conserver un équilibre des charges. Savez-vous pourquoi ?
  • Nécessité d'une étude quantique, principe d'incertitude d'Heisenberg
  • Probabilité de présence d'un électron
  • Quantification de l'énergie des atomes : niveaux d'énergie, nombres quantiques, dégénérescence des niveaux d'énergie
  • Configuration électronique d'un atome : principe d'exclusion de Pauli, règle de Klechkowski, établissement des configurations électroniques, règle de Hund, cas des ions
  • Électrons de valence ou de cœur, retour sur le tableau périodique des éléments.

Molécules : théorie de Lewis et Gillespie

  • Modèle de Lewis : liaison covalente, règle de l'octet (limitée aux éléments des 3 premières lignes du tableau périodique), méthode d'obtention d'une formule brute, charges formelles et mésomérie.
  • Théorie de Gillespie : principe, figures de répulsion, exemples.
Les meilleurs professeurs de Physique - Chimie disponibles
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert !
Sébastien
5
5 (71 avis)
Sébastien
60€
/h
1er cours offert !
Antoine
4,9
4,9 (73 avis)
Antoine
60€
/h
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert !
Sébastien
5
5 (71 avis)
Sébastien
60€
/h
1er cours offert !
Antoine
4,9
4,9 (73 avis)
Antoine
60€
/h
1er cours offert>

L'écoulement des fluides

L'écoulement laminaire

Quand on parle d'écoulement laminaire en mécanique des fluides, on évoque le mode d'écoulement d'un fluide dans le cas où l'ensemble du fluide s'écoule plus ou moins dans la même direction et cela sans que les différences locales ne se contrarient. On est alors en opposition au régime turbulent au cours duquel l'écoulement produit des tourbillons qui vont mutuellement se contrarier.

Ainsi, lorsque l'on cherche à faire circuler un fluide dans un tuyau, on cherche à mettre en place un écoulement laminaire afin qu'il y ait moins de pertes de charge. Mais on cherche aussi à mettre en place un écoulement laminaire lorsque l'on cherche à faire voler un avion afin que le vol soit stable et prévisible à l'aide d'équations.

L'écoulement laminaire d'un point de vue microscopique

Il est toujours intéressant d'apporter un point de vue microscopique à une réflexion. en effet, alors que rien ne se voit d'un point de vue macroscopique, il peut se passer beaucoup de chose dans le monde du très petit.

Lorsque l'on observe un écoulement laminaire à l'échelle microscopique, on peut observer que deux particules de fluides qui sont voisines à un instant défini resteront voisines lors des prochains moments d'observation. Par cette observation, on peut décrire un champ de vitesse grâce à l'utilisation de techniques classiques d'analyse mathématique.

Dans le cas où l'écoulement devient turbulent, celui-ci devient alors sans organisation apparente. Les techniques classiques d'analyse mathématique utilisées précédemment ne suffisent alors plus pour décrire le champ de vitesse.

L'écoulement laminaire d'un point de vue macroscopique

Tout comme la notion de régime turbulent, la notion de régime laminaire est très fortement liée à la viscosité du fluide en mouvement. En effet, lorsque le liquide se situe dans une conduite ou autour d'un obstacle, alors, au voisinage d'une paroi sur laquelle la vitesse relative du fluide est nulle, on peut alors observer l'apparition de fortes variations de vitesse au sein desquelles la viscosité est impliquée.

De façon plus précise, on peut dire que l'écoulement visqueux est caractérisé grâce à un nombre sans dimension que l'on appelle le nombre de Reynolds. Ce nombre permet alors de mesurer l'importance relative des forces inertielles qui sont liées à la vitesse et des forces de frottement qui sont liées à la viscosité.

Ainsi, si ces dernières sont prépondérantes, alors on peut dire que le frottement, qui se produit entre deux couches de fluides, maintient leur cohésion : on obtient ainsi un écoulement laminaire.

Dans le cas où le nombre de Reynolds augmente au-delà d'un certain seuil, alors l'écoulement est déstabilisé. Dans ce cas, il peut y avoir un régime turbulent qui va se mettre en place après qu'une phase de transition, plus ou moins importante, ait eu lieu.

Le nombre de Reynolds, noté Re, correspond à un nombre sans dimension qui est utilisé en mécanique des fluides. Cette grandeur permet alors de caractériser un écoulement, en particulier la nature de son régime. Il est ainsi possible de savoir si un écoulement est laminaire, transitoire ou turbulent.

Le régime turbulent

Lorsque vous subissez des turbulences en plein vol, c'est tout simplement que votre avion entre dans une zone où le flux d'air provoque une zone d'écoulement turbulent.

Le terme turbulence correspond à l'état de l'écoulement d'un fluide, qu'il soit liquide ou gaz, au sein duquel la vitesse présente un caractère tourbillonnaire. On entend par là la présence de tourbillons dont la taille, la localisation mais également l'orientation vont, de façon constante, varier.

On peut caractériser un écoulement turbulent par une apparence très désordonnée mais également par un comportement qui restera difficilement prévisible et par l'existence de nombreuses échelles spatiales et temporelles.

Il est possible de voir apparaître ce type d'écoulement dans le cas où la source d'énergie cinétique, qui provoque la mise en mouvement du fluide, est relativement intense devant les forces de viscosité que le fluide va opposer pour se déplacer. On peut alors opposer cet écoulement au régime laminaire qui est régulier.

Pour étudier le comportement complexe des écoulements turbulent, il faut, dans la plupart des cas, utiliser la voie statistique. En effet, on peut, de ce fait, considérer que cette étude fait partie intégrante de la physique statistique afin de traduire que, lors d'un écoulement, les forces d'inertie l'emportent sur les forces de viscosité.

Écoulement de Poiseuille et loi de Poiseuille

La loi de Poiseuille, que l'on appelle aussi loi de Hagen-Poiseuille, permet de décrire ce que l'on appelle écoulement laminaire, c'est à dire un écoulement sous la forme de filets de liquide parallèles, d'un liquide visqueux au sein d'une conduite cylindrique. On appelle logiquement écoulement de Poiseuille tout écoulement qui suit une loi de Poiseuille.

De façon générale, la loi de Poiseuille permet de décrire de façon théorique la relation existante entre le débit d'un écoulement et la viscosité d'un fluide, mais aussi la différence de pression aux extrémités de la canalisation ainsi que la longueur et le rayon de cette même canalisation.

Écoulement torrentiel et fluvial

On parle d'écoulement torrentiel et d'écoulement fluvial dans le cas d'un équilibre de l'écoulement d'un liquide dans un canal ou encore un cours d'eau ou une conduite à la surface libre.

De façon plus précise, on parle d'écoulement torrentiel dans le cas où le nombre de Froude est supérieur à 1, ce qui signifie alors que la vitesse du courant est supérieure à la vitesse d'une vague de liquide étudié. Dans le cas contraire, on parle d'écoulement fluvial.

Notons qu'il est possible de passer d'un régime torrentiel à un régime fluvial lorsqu'il y a un ressaut hydraulique, ce qui signifie qu'il y a une élévation du niveau d'eau ou encore lorsqu'il y a une dissipation d'énergie. Il est d'ailleurs possible d'observer ce phénomène dans un évier de cuisine.

Écoulement polyphasique

On parle d'écoulement polyphasique lorsque l'on observe un écoulement de fluide comportant plusieurs phases. On peut, par exemple, étudier le comportement d'un fluide qui comporte en son sein des bulles de gaz ou encore étudier le comportement d'un mélange de deux fluides non miscibles.

Mécanique et paramètres : viscosité, température et densité

La viscosité

n appelle viscosité l'ensemble des phénomènes de résistance à l'écoulement qui peuvent se produire dans la masse d'une matière dans le cas d'un écoulement que l'on considère comme étant uniforme et sans turbulence. De façon logique, plus la viscosité sera élevée, plus la capacité que possède le fluide à s'écouler facilement va diminuer. De plus, lorsque la viscosité est élevée, l'énergie qui sera dissipée par l'écoulement sera importante.

La viscosité de cisaillement, qui peut être comprise comme une résistance à l'écoulement des différentes couches d'un fluide les unes sur les autres, englobe plusieurs grandeurs physiques qui permettent de la caractériser :

  • La viscosité dynamique qui est la grandeur la plus utilisée. En effet, on se réfère généralement à cette grandeur lorsque l'on parle de viscosité sans précision. Elle permet de faire le lien entre la contrainte de cisaillement et le gradient transversal de la vitesse d'écoulement dans la matière. C'est donc pour cela que l'on appelle cette grandeur vitesse dynamique.
  • La viscosité cinématique, cette grandeur peut être déduise de la vitesse dynamique ;
  • La seconde viscosité qui caractérise la résistance du fluide à des variations de volume ;
  • Et pour finir, la viscosité de volume qui correspond à la combinaison de la viscosité dynamique et la seconde viscosité.

De ce fait, on peut considérer la viscosité comme correspondant à une quantité tensorielle bien qu'il reste possible que, selon les cas, on puisse exprimer cette grandeur sous la forme d'une grandeur scalaire.

La viscosité (de cisaillement) peut être vue comme la résistance à l'écoulement des différentes couches d'un fluide les unes sur les autres. Plusieurs grandeurs physiques caractérisent la viscosité :

En ce qui concerne les liquides, alors que l'inverse est vrai pour les gaz, la viscosité va tendre, de façon générale, à diminuer lorsque la température va augmenter. De plus, croire que la viscosité d'un fluide donné augmente avec la densité est faux car ce n'est pas nécessairement vrai. On peut en effet prendre l'exemple de l'huile qui, pourtant moins dense que l'eau (0,92 pour l'huile de Colza à 20°C et 1 pour l'eau à 20°C) alors que l'huile est, de façon très nette, plus visqueuse que l'eau.

Pour ce qui est des huiles de mécaniques, elles seront classées selon leur viscosité puisque l'huile utilisée dans les moteurs va varier selon les besoins de lubrifications de celui-ci mais aussi selon les températures auxquelles l'huile mécanique sera soumise lorsque le moteur sera en marche.

La viscosité peut varier

Pourquoi une réaction est plus rapide quand elle est chauffée ?
La température est un paramètre qui agit sur de nombreuses caractéristiques. Dans ce cas, la température influe sur la viscosité.

Comme expliqué précédemment, la viscosité d'un fluide varie selon la température, mais aussi les actions mécaniques auxquelles ce fluide est soumis. Ainsi, afin de déterminer l'importance de l'effet de la température sur la viscosité d'un fluide, on va utiliser un indice appelé indice de viscosité. De façon logique, plus cet indice est grand, moins la température aura une influence sur la viscosité du fluide étudié.

La viscosité dynamique

La viscosité dynamique peut alors être définie en considérant deux couches d'un fluide que l'on nommera abcd et a'b'c'd' en sachant que la couche abcd est animée d'une vitesse relative à a'b'c'd' que l'on notera dv qui sera dirigée selon x. On considère également une force de frottement notée F comme s'exerçant sur la couche a'b'c'd' séparée de dz.

Ainsi, la viscosité dynamique, que l'on note η ou µ, est présente au sein de la relation entre la norme de la force de frottement F et le taux de cisaillement dv/dz. On à obtient alors :

    \[ F = \eta \times S \times \frac { \text { d } v } { \text { d } z } \]

avec S correspondant à la surface de chaque couche de liquide.

L'analyse dimensionnelle de la viscosité dynamique donne donc, de façon logique :

    \[ \left[ \eta \right] = \left[ M \right] \times \left[ L \right] ^ { - 1 } \times \left[ T \right] ^ { - 1 } \]

Si on souhaite utiliser les unités du système international d'unité, la viscosité dynamique possède la pascals secondes, noté Pa.s, en unité. Auparavant, on utilisé le poiseuille, noté Pl, qui présentait la même valeur que le pascals secondes.

Une ancienne unité du système CGS pour la viscosité dynamique était la poise, notée Po, donc la correspondance était :

    \[ 1 \text { Pa } \cdot \text { s } = 10 \text { Po } \]

Ainsi, la viscosité de l'eau à 20°C correspond à 1 centipoise, noté cPo, ce qui correspond à 1 mPa.s.

La fluidité

La fluidité correspond à l'inverse de la viscosité dynamique

La viscosité cinématique

Il est possible d'obtenir la viscosité cinématique, noté ν, en divisant la viscosité dynamique par la masse volumique, notée ρ, du fluide. On obtient alors la relation suivante :

    \[ \nu = \frac { \eta } { \rho } \]

Son unité, le mètre carré par seconde, noté n².s-1, correspondant, dans l'ancien système CGS comme étant le stokes ou centistokes notés respectivement St et cSt.

La conversion est très rapide car :

    \[ 1 \text { St } = 1 \text { cm } ^ 2 \cdot \text { s } ^ { - 1 } = 10 ^ { - 4 } \text { m } ^ 2 \cdot \text { s } ^ {- 1 } \]

et

    \[ 1 \text{ cSt } = 1 \text { mm } ^ 2 \cdot \text { s } ^ { - 1 } = 10 ^ { - 6 } \text{ m } ^ 2 \cdot \text { s } ^ { - 1 } \]

La seconde viscosité

La seconde viscosité correspond au second paramètre scalaire qui permet de caractériser de façon complète un fluide considéré comme étant newtonien.

Elle est cependant omise dans la littérature puisque, pour la plupart des fluides usuels, il manque la caractérisation des fluides en ce qui concerne leur approximation newtonienne.

La viscosité de volume

La viscosité de volume correspond à une fonction linéaire des viscosités principale et seconde viscosité.

On a ainsi :

    \[ 3 \times K = 3 \times \lambda + 2 \times \mu \]

La viscosité élongationnelle

On considère la viscosité élongationnelle comme étant une viscosité qui apparaît lorsqu'une contrainte élongationnelle s'applique au fluide étudié.

Besoin d'un professeur de Physique - Chimie ?

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00/5 - 1 vote(s)
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !