Les mouvements existant

Comment se déplace un satellite ?
Lorsque vous lancez une balle à votre chien, celle-ci suivra un mouvement parabolique.
  • Lorsqu’un solide est soumis à des actions extérieures qui se compensent on dit qu’il est pseudo-isolé. Un solide qui ne subirait aucune action extérieure serait dit isolé, ce serait approximativement le cas d’un solide perdu, très très loin de toute étoile ou planète, dans l’espace interstellaire.
  • Le centre d’inertie d'un objet, et ce quelle que soit l’histoire antérieure du système, s’il est pseudo isolé, correspond à un et un seul des points de sa trajectoire qui est toujours en mouvement rectiligne et uniforme. C’est par exemple au centre d’inertie d’un solide que s’exerce le poids du système.
  • On dit que deux objets A et B sont en interaction, si l'objet A exerce une action qui se manifeste par ses effets sur l'objet B, et si réciproquement, l'objet B agit sur l'objet A.
  • On considère qu'une force correspond à l’action exercée par chacun des corps sur l’autre.
  • Puisque toute interaction est réciproque, on choisit d’étudier un participant, le système, et les forces qui s’exercent sur lui. Un système correspond à l’ensembles des objets dont on étudie le mouvement. Ainsi on sépare l’Univers en deux : le système et l’extérieur. Pour résumer, tout ce qui n’est pas le système est appelé extérieur et le système subit des forces exercées par ce qui est intérieur au système, appelées forces extérieures
  • Qu’est-ce qu’un système déformable ?
    • Un système déformable correspond système dont la distance entre deux de ces points quelconques peur varier.
  • Qu’est-ce qu’un système indéformable ?
    • Un système indéformable correspond à un système dont la distance entre deux de ce point quelconque est toujours constante. Un tel système est alors appelé un solide.
  • On considère qu'une force localisée correspond à une force qui ne s’applique qu'en un point d’un objet ou sur un objet ponctuel. Par exemple un fil tire un objet avec une force T localisée au point d’accrochage.
  • On considère qu'une force répartie correspond à une force qui s’applique sur un ensemble de points répartis sur une surface ou dans un volume de l’objet. Par exemple le poids P est réparti dans tout le volume d’un objet.
  • On considère qu'une force à distance correspond à une force qui s’exerce entre 2 objets pouvant être séparés par de l’air, de l’eau, du vide… Il y a 3 sortes de forces à distance :
    • Les forces de gravitation : Elles s’exercent entre les astres ; entre la terre et les objets terrestres. Le poids d’un corps est essentiellement une force de gravitation. Ce sont des forces attractives.
    • Les forces électriques : Elles s’exercent entre deux objets portant des charges électriques. Elles peuvent être aussi bien attractives que répulsives.
    • Les forces magnétiques : Elles s’exercent entre des aimants ou entre des aimants et certains matériaux (en particulier le fer). Elles aussi peuvent être attractives ou répulsives.
  • Pour considérer une force comme étant une force de contact, il faut obligatoirement qu’il y ait contact entre les deux objets pour que naisse cette fameuse force de contact. Par exemple la force de traction d’un fil, mesurée par la tension du fil, s’applique au point de contact objet-fil.
  • Un effet dynamique correspond à une force qui peut modifier le mouvement d’un système, c’est à dire modifier son vecteur vitesse.
  • Les effets statiques existant sont :
    • L'équilibre : on considère qu'un système est en équilibre si tous ses points sont au repos dans le référentiel d’étude.
    • Les effets d’une force : on considère qu’une force peut contribuer à l’équilibre d’un système et déformer un système en équilibre ou non.
  • Qu’est-ce qu’un solide ponctuel ?
    • Un solide ponctuel correspond à un solide dont les dimensions sont très inférieures aux autres dimensions du problème et qui peut donc être considéré comme un point.

Pour étudier le mouvement d’un système on a toujours besoin de se fixer un référentiel : c’est un objet par rapport auquel on étudiera le mouvement de notre système. Définition : La trajectoire d’un point matériel est l’ensemble des positions successives occupées par ce point au cours du temps. Elle dépend du référentiel choisi. En simplifiant, on peut définir le référentiel comme quelque chose correspondant au milieu au sein duquel on étudie le mouvement. En effet, si nous choisissons de prendre l'exemple du voyageur assit dans un train en marche alors le référentiel vas changer selon l'observateur :

  • Par rapport à un observateur sur le quai, le voyageur est en mouvement
  • Par rapport à un observateur dans le train, le voyageur est immobile.

Ainsi, il est possible de conclure que, pour décrire le mouvement d’un mobile, il faut choisir un repère d’espace ou référentiel. La trajectoire correspond à l’ensemble de toutes les positions successives qu’occupe un point du mobile au cours du temps. La trajectoire peut être curviligne, c'est à dire en vague, circulaire, donc en forme de rond, ou rectiligne.

  • Mouvement rectiligne : la trajectoire est une droite
  • Mouvement circulaire : la trajectoire est un arc de cercle
  • Mouvement curviligne : la trajectoire est une courbe quelconque, plane ou non.

Deux types de mouvement sont très importants dans l’étude des systèmes :

  • La translation : Dans un mouvement de translation, chaque segment de droite, appartenant au mobile, reste parallèle à lui-même, au cours du déplacement et tous les points du mobile ont des trajectoires identiques de même longueur.
  • La rotation : Dans un mouvement de rotation, tous les points du mobile décrivent des cercles ou des arcs de cercles centrés sur une droite fixe que l'on appelle axe de rotation. On peut notamment illustrer ce mouvement avec l'exemple des aiguilles d’une horloge.
    • Si la trajectoire est une droite, la translation est rectiligne, comme dans le cas d'un ascenseur.
    • Si la trajectoire est une courbe, la translation est curviligne, comme dans le cas d'un téléphérique.
    • Si la trajectoire est un cercle ou un arc de cercle, la translation est circulaire, comme dans le cas d'une grande roue.

Définition : Une translation correspond à une droite passant par 2 points quelconques du solide qui reste parallèle au cours du mouvement

Définition : Une rotation correspond à un mouvement où tous les points décrivent des cercles dont les centres sont alignés et tous les plans sont parallèles.

Les meilleurs professeurs de Physique - Chimie disponibles
Greg
5
5 (145 avis)
Greg
100€
/h
Gift icon
1er cours offert !
Houssem
5
5 (118 avis)
Houssem
55€
/h
Gift icon
1er cours offert !
Moujib
5
5 (81 avis)
Moujib
75€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (110 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (80 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (54 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (93 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Florian
5
5 (32 avis)
Florian
30€
/h
Gift icon
1er cours offert !
Greg
5
5 (145 avis)
Greg
100€
/h
Gift icon
1er cours offert !
Houssem
5
5 (118 avis)
Houssem
55€
/h
Gift icon
1er cours offert !
Moujib
5
5 (81 avis)
Moujib
75€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (110 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (80 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (54 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (93 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Florian
5
5 (32 avis)
Florian
30€
/h
Gift icon
1er cours offert !
C'est parti

Les actions de contact

Actions de contact localisées

Les actions de contact localisées correspondent à des actions qui s'exercent sur un point précis ou encore sur une petite surface du receveur comme dans le cas du perchiste et de sa perche ou encore dans le cas de la caravane tirée par une voiture.

Actions de contact réparties

Les actions de contact réparties correspondent à des actions qui s'exercent sur une grande surface du receveur comme dans le cas du le vent dans la voile ou dans le cas de l'eau sur la planche de surf.

Les actions à distance

On peut parler d'action à distance lorsque l'on se trouve dans un cas où il n'y a pas de contact entre l'acteur et le receveur et dans le cas ou ces actions se sont des actions réparties dans toute la matière de l'objet. Il existe alors différents types actions à distance :

  • Les actions électriques comme dans le cas où fin filet d'eau attiré par une règle en plastique frottée avec de la laine, on parle alors d'électricité statiques causée par un champ ;
  • Les actions magnétiques comme dans le cas où aimant attire les objets en fer et en nickel ;
  • Ou encore les actions gravitationnelles qui s'exercent sur tous les corps dont la masse n'est pas nulle, on peut présenter l'exemple de l'attraction terrestre.

Les actions liées à l'attraction terrestre

Comment fonctionne la gravitation terrestre ?
Il ne faut pas confondre la pesante avec l'apesanteur !

Une autre action mécanique à distance est celle qui s'exerce entre deux objets : c'est l'attraction gravitationnelle. Cette action ne devient sensible que lorsqu'un des deux objets considérés a une masse très grande.

Ainsi, la Terre attire tous les objets vers elle. Lorsqu'on lâche un objet, il tombe: cette action exercée par la Terre est appelée la pesanteur.

L'inertie

En physique, on appelle inertie d'un corps, dans un référentiel galiléen, une tendance de ce corps à conserver sa vitesse. En effet, lorsqu'il y a absence d'influences extérieures, on parle aussi de forces extérieures, alors tout corps que l'on considère comme ponctuel va perdurer dans un mouvement rectiligne uniforme. Notons que l'on appelle aussi l'inertie, principe d'inertie ou encore loi d'inertie. Puis, lorsque Newton est arrivé, on l'appelle également première loi de Newton. Elle s'énonce ainsi : Un système isolé ou pseudo-isolé initialement au repos ou en mouvement rectiligne uniforme demeure dans son état. On appelle référentiel galiléen tout référentiel au sein duquel le principe d'inertie est vérifié. Même s'il n'existe aucun référentiel galiléen au sens strict. Il est cependant possible de considérer certains référentiels usuels comme galiléen si certaines conditions sont vérifiées :

  • Ainsi, le référentiel terrestre peut être considéré galiléen si on considère un mouvement dont la durée ne dépasse pas quelques minutes dans le but de s'affranchir du mouvement de rotation propre de la Terre.
  • Le référentiel géocentrique peut également être considéré comme étant galiléen si on considère un mouvement dont la durée ne dépasse quelques heures dans le but de s'affranchir du mouvement de rotation de la Terre autour du Soleil.
  • Le référentiel héliocentrique peut aussi être considéré comme étant galiléen car l'impact du mouvement de rotation du Soleil au sein de la galaxie est négligeable.

Gravitation

La gravitation correspond à une force attractive qui s'exerce à distance entre deux corps qui ont une masse et cette force dépend :

  • De la distance : Plus la distance est grande, plus la force est petite.
  • De la masse des corps : Plus la masse est grande, plus la force gravitationnelle est grande.

Champ gravitationnel

En physique classique, on appelle champ gravitationnel, ou encore champ de gravitation, un champ qui est réparti dans l'espace et dû à la présence d'une masse qui est alors susceptible d'exercer une influence gravitationnelle sur tous les autres corps pouvant être présent à proximité immédiate ou non. On peut démontrer que le champ gravitationnel créé en un point quelconque par un corps ponctuel dérive d'un potentiel scalaire dit newtonien. En physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l'espace et dû à la présence d'une masse susceptible d'exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L'introduction de cette grandeur permet de s'affranchir du problème de la médiation de l'action à distance apparaissant dans l'expression de la force de gravitation universelle. On peut interpréter le champ gravitationnel comme étant la modification de la métrique de l'espace-temps. L'approximation newtonienne est alors valable uniquement dans le cas où les corps présentent une vitesse faible par rapport à celle de la lumière dans le vide et si le potentiel gravitationnel qu'ils créent est tel que le quotient du potentiel gravitationnel sur le carré de la vitesse de la lumière dans le vide est négligeable. On peut approcher le champ électrique et le champ gravitationnel. En effet, l'expression du champ et du potentiel ne sont différents que d'une constante. De plus, les principaux théorèmes de calculs, celui de la superposition ou de Gauss par exemple, peuvent s'appliquer dans les deux cas. Ce qui les différencie alors est le caractère attractif, donc entre deux charges de signe opposé, ou répulsif, donc entre deux charges de même signe, du champ électrique tandis que le champ gravitationnel ne peut être qu'attractif.

Principe de l'analogie
  • L'analogie repose sur la similitude des lois de Coulomb (électromagnétisme) et loi de Newton (gravitation).
  • Il est souvent inutile de faire les calculs de champs gravitationnels à partir de répartitions de masses, on procède plutôt par analogie avec les résultats connus de l'électrostatique.

La force d'interaction gravitationnelle, tout comme la force d'interaction électrostatique, est une force conservative. Ainsi, elles représentent toutes les deux le gradient d'une énergie potentielle. Dans ce cas, il est alors possible d'adapter absolument tous les calculs de champ et de potentiel étudiés dans le cadre du cours sur la distribution de masses dans le but de calculer le champ et le potentiel gravitationnels en un point définis de l'espace. Il en va de même avec le théorème de Gauss.

Remarque

Il peut être intéressant de mentionner que la force électrique fondamentale, également appelée force de Coulomb, peut être utilisée comme fondement de l'électrostatique. Ainsi, on peut déduire de ce fondement le théorème de Gauss. C'est donc pour cela que l'on peut dire que la ressemblance formelle, c'est-à-dire les similarités des formules mathématiques, entre la force de Coulomb et la force gravitationnelle est une base solide permettant de fonder l'analogie entre les deux classes de phénomènes énoncés dans ce cours. Ainsi, à partir de la force de Coulomb et par superposition, on peut être capable d'établir des expressions intégrales du champ électrique en fonction de la distribution de charge. Bien que ces calculs soient trop complexes pour être utiles dans les calculs analytiques, ils peuvent être très utiles afin de déterminer un champ électrique par résolution numérique, c'est-à-dire par ordinateur. Notons qu'il est possible de démontrer ces formules en utilisant le théorème de superposition

Cinématique des changements de référentiels

  • Formule de la dérivation vectorielle
  • Lois de composition des vitesses et des accélérations ( pour celle-ci, la connaissance de la formule donnant l'accélération d'entraînement est déconseillée au profit de l'utilisation du point coïncident)
  • Cas particuliers de mouvement d'entraînement : translation et rotation uniforme autour d'un axe fixe

Dynamique en référentiel non galiléen

Comment observer les étoiles ?
Galilée a inventé la première lunette astronomique !
  • Propriété des référentiels galiléens
  • RFD en référentiel non galiléen : forces d'inertie
  • Cas particuliers de mouvement d'entraînement : translation et rotation uniforme autour d'un axe fixe
  • Caractère galiléen de quelques référentiels d'utilisation courante :
  • Référentiel de Copernic (que l'on confond avec le référentiel de Kepler),
  • Référentiel  géocentrique : mouvement d'entraînement, RFD avec mise en évidence du terme des marées, terme négligé sous certaines hypothèses,
  • Référentiel terrestre : mouvement d'entraînement, RFD sans, puis avec simplification du terme des marées, définition du champ de pesanteur et du poids.

Systèmes de deux points matériels

  • Dynamique des systèmes de deux points :
    • Théorème du centre d'inertie, théorème du moment cinétique, théorème de l'Ec, calcul du travail résultant des forces intérieures, énergie mécanique lorsque les forces intérieures sont conservatives et sa variation
    • Référentiel barycentrique Rb
  • Cas des systèmes isolés :
    • Rb galiléen, conservation du moment cinétique, conservation de l'énergie mécanique si les forces intérieures sont conservatives
    • Mouvement relatif de M2/M1, vitesses et accélérations relatives de M2/M1, vitesses, quantités de mouvement barycentriques de M2 et M1, énergie cinétique et moment cinétique barycentriques du système en fonction de la masse réduite et de la vitesse relative d'où la réduction du pb à deux corps en un problème à un corps : mobile réduit (sa masse et sa position), force fictive à lui attribuer, propriétés du mouvement.

Mouvement et énergies

L'énergie cinétique

Tout corps en mouvement en possède une. Elle peut être macroscopique : elle dépend alors de la vitesse du corps en mouvement, et donc du référentiel d'étude microscopique : elle est liée à l'agitation moléculaire. Une augmentation de l'énergie cinétique microscopique se traduit par une augmentation de la température.

En résumé, l'énergie cinétique correspond à l'énergie d'un objet en mouvement.

La formule est : [ E _ { c } = frac { 1 } { 2 } times m times v ^ { 2 } ]

Avec :

  • Ec correspondant à l'énergie cinétique de l'objet étudié avec pour unité le Joule noté J ;
  • m correspondant à la masse de l'objet étudié avec pour unité le kilogramme noté kg ;
  • Et v correspondant à la vitesse de l'objet étudié avec pour unité la mètre par seconde noté m.s-1.

Exemple

Prenons le cas d'un système en translation. Il est important de savoir que la relation définissant l'énergie cinétique ne s'applique pas pour les solides en rotation.

L'énergie cinétique d'une voiture qui pèse 1 tonne et qui roule à 130 Km/h est de [ E _ { c } = frac { 1 } { 2 } times 1000 times left( frac { 130 } { 3,6 } right) ^ { 2 } = 652 space 006 text { J } ]

La vitesse

Comment augmenter la vitesse maximale d'un objet ?
La vitesse est une grandeur physique qui est définie par une évolution face au temps.

La vitesse ne définit pas qu’uniquement la vitesse de déplacement mais peut aussi correspondre à la vitesse de réaction chimique ou encore une vitesse de séchage par exemple.

En règle générale, une vitesse est égale à la division de la mesure d’une variation telle qu’une longueur, un volume ou encore un poids par la mesure du temps écoulé au cours de cette variation.

L’exemple le plus simple est celui de la vitesse de déplacement. Il s’agit d’une distance divisée par un temps comme les mètres par seconde ou les kilomètres par heure.

La masse

En physique, la masse correspond à une grandeur physique positive et intrinsèque d'un corps.

De façon plus précise, en physique newtonienne, la masse correspond à une grandeur extensive. Cela signifie alors que la masse d'un corps formé de parties correspond à la somme des masses de ces différentes parties qui le compose.

De plus, il est essentiel de noter que la masse est une grandeur conservative. De ce fait, elle reste constante dans le cas d'un système isolé qui n'échange donc pas de matière avec son environnement.

L'énergie potentielle (ou de position)

Elle dépend de la position relative des différentes parties du système : seul un système déformable pourra posséder, à l'échelle macroscopique, de l'énergie potentielle.

En résumé, l'énergie potentielle correspond à l'énergie contenue dans un objet au-dessus du sol.

La formule est : [ E _ { p } = m times g times h ]

  • Ep correspondant à l'énergie potentielle de l'objet étudié avec pour unité le Joule noté J ;
  • m correspondant à la masse de l'objet étudié avec pour unité le kilogramme noté kg ;
  • g correspondant à l'intensité de pesanteur avec pour unité le Newton par kilogramme noté N.kg-1. A noter que la valeur approximative de g est de 9,81 N.kg-1.
  • Et v correspondant à la vitesse de l'objet étudié avec pour unité la mètre par seconde noté m.s-1.

L'énergie mécanique

L'énergie mécanique Em d'un système est une grandeur macroscopique, somme de son énergie cinétique Ec et de son énergie potentielle Ep.

[ E _ { M } left( J right) = E _ { c } left( J right) + E _ { p } left( J right) ]

L'énergie mécanique dépend alors du référentiel d'étude.

Théorie cinétique des GP

  • Modèle GPM : hypothèses, définition cinétique de la pression (avec modèle simple sur les vitesses), définition cinétique de T, équation d'état, énergie interne
  • Extension aux GP polyatomiques
  • Gaz réels : hypothèses mises en défaut, équation d'état de Van der Waals, développement du viriel
>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !