Dans l’acquisition de l’autonomie, la « résolution de problèmes » est une activité intermédiaire entre l’exercice cadré qui permet de s’exercer à de nouvelles méthodes, et la démarche par projet, pour laquelle le but à atteindre n’est pas explicite. Il s’agit pour l’étudiant de mobiliser ses connaissances, capacités et compétences afin d’aborder une situation dans laquelle il doit atteindre un but bien précis, mais pour laquelle le chemin à suivre n’est pas indiqué. Ce n’est donc pas un « problème ouvert » pour lequel on soumet une situation en demandant « Que se passe-t-il ? ». L’objectif à atteindre doit être clairement donné et le travail porte sur la démarche à suivre, l’obtention du résultat et son regard critique.

La résolution de problèmes permet de se confronter à des situations où plusieurs approches sont possibles, qu’il s’agisse de la méthode mise en œuvre ou du degré de précision recherché. Ces situations se prêtent bien à une résolution progressive pour laquelle un premier modèle permettra d’obtenir rapidement un résultat, qui sera ensuite discuté et amélioré. Cette résolution étagée doit permettre à tous les élèves d’aborder le problème selon leur rythme en s’appuyant sur les compétences qu’ils maîtrisent.

C’est sur la façon d’appréhender une question scientifique, sur le choix raisonné de la méthode de résolution et sur les moyens de vérification qu’est centrée la formation de l’élève lors de la démarche de résolution de problèmes. La résolution de problèmes mobilise les compétences qui figurent dans le tableau ci-dessous. Des capacités associées sont explicitées afin de préciser les contours de chaque compétence, elles ne constituent donc pas une liste exhaustive et peuvent parfois relever de plusieurs domaines de compétences.

CompétenceExemples de capacités associées
S’approprier le problème.Faire un schéma modèle.

Identifier les grandeurs physiques pertinentes, leur attribuer un symbole.

Évaluer quantitativement les grandeurs physiques inconnues et non précisées.

Relier le problème à une situation modèle connue.

….

Établir    une    stratégie    de résolution (analyser).Décomposer le problème en des problèmes plus simples.

Commencer par une version simplifiée.

Expliciter la modélisation choisie (définition du système, …).

Déterminer et énoncer les lois physiques qui seront utilisées.

…..

Mettre en œuvre la stratégie (réaliser). Mener la démarche jusqu’au bout afin de répondre explicitement à la question posée.

Savoir mener efficacement les calculs analytiques et la traduction numérique.

Utiliser l’analyse dimensionnelle.

Avoir un regard critique sur les résultats obtenus (valider).S’assurer que l’on a répondu à la question posée.

Vérifier la pertinence du résultat trouvé, notamment en comparant avec des estimations ou ordres de grandeurs connus.

Comparer le résultat obtenu avec le résultat d’une autre approche (mesure expérimentale donnée ou déduite d’un document joint, simulation numérique, …).

Étudier des cas limites plus simples dont la solution est plus facilement vérifiable ou bien déjà connue.

CommuniquerPrésenter la solution ou la rédiger, en en expliquant le raisonnement et les résultats.

 

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (Aucune note pour le moment)
Loading...

Mathieu

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide