Notions et contenus

  • Éléments de statique des fluides dans un référentiel galiléen.
  • Forces surfaciques, forces volumiques.
  • Statique dans le champ de pesanteur uniforme : relation dp/dz = -ρg.
  • Facteur de Boltzmann.
  • Résultante de forces de pression.
  • Poussée d’Archimède.
  • Équivalent volumique des forces de pression.
  • Équation locale de la statique des fluides.
Les meilleurs professeurs de Physique - Chimie disponibles
Greg
5
5 (168 avis)
Greg
150€
/h
Gift icon
1er cours offert !
Moujib
5
5 (86 avis)
Moujib
90€
/h
Gift icon
1er cours offert !
Houssem
4,9
4,9 (132 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Patrick
5
5 (34 avis)
Patrick
55€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (117 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
4,9
4,9 (82 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (55 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (93 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Greg
5
5 (168 avis)
Greg
150€
/h
Gift icon
1er cours offert !
Moujib
5
5 (86 avis)
Moujib
90€
/h
Gift icon
1er cours offert !
Houssem
4,9
4,9 (132 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Patrick
5
5 (34 avis)
Patrick
55€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (117 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
4,9
4,9 (82 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (55 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (93 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Capacités exigibles

  • Distinguer le statut des forces de pression et des forces de pesanteur.
  • Connaître des ordres de grandeur des champs de pression dans le cas de l’océan et de l’atmosphère.
  • Exprimer l’évolution de la pression avec l’altitude dans le cas d’un fluide incompressible et homogène et dans le cas de l’atmosphère isotherme dans le modèle du gaz parfait.
  • S’appuyer sur la loi d’évolution de la densité moléculaire de l’air dans le cas de l'atmosphère isotherme pour illustrer la signification du facteur de Boltzmann.
  • Approche documentaire : reconnaître un facteur de Boltzmann ; comparer kBT aux écarts d’énergie dans un contexte plus général.
  • Exprimer une surface élémentaire dans un système de coordonnées adaptées.
  • Utiliser les symétries pour déterminer la direction d’une résultante de forces de pression.
  • Évaluer une résultante de forces de pression.
  • Expliquer l’origine de la poussée d'Archimède.
  • Exploiter la loi d’Archimède.
  • Exprimer l’équivalent volumique des forces de pression à l’aide d’un gradient.
  • Établir l’équation locale de la statique des fluides.
Comment flotte un ballon dans l'air ?
La loi d'Archimède fait partie des lois à connaître, comprendre, et à savoir utiliser.

Le champ gravitationnel

En physique classique, on appelle champ gravitationnel, ou encore champ de gravitation, un champ qui est réparti dans l'espace et dû à la présence d'une masse qui est alors susceptible d'exercer une influence gravitationnelle sur tout les autres corps pouvant être présent à proximité immédiate ou non.

On peut démontrer que le champ gravitationnel créé en un point quelconque par un corps ponctuel dérive d'un potentiel scalaire dit newtonien.

En physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l'espace et dû à la présence d'une masse susceptible d'exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L'introduction de cette grandeur permet de s'affranchir du problème de la médiation de l'action à distance apparaissant dans l'expression de la force de gravitation universelle.

On peut interpréter le champ gravitationnel comme étant la modification de la métrique de l'espace-temps. L'approximation newtonienne est alors valable uniquement dans le cas où les corps présentent une vitesse faible par rapport à celle de la lumière dans le vide et si le potentiel gravitationnel qu'ils créent est tel que le quotient du potentiel gravitationnel sur le carré de la vitesse de la lumière dans le vide est négligeable.

On peut approcher le champ électrique et le champ gravitationnel. En effet, l'expression du champ et du potentiel ne sont différents que d'une constante. De plus, les principaux théorèmes de calculs, celui de la superposition ou de Gauss par exemple, peuvent s'appliquer dans les deux cas. Ce qui les différencie alors est le caractère attractif, donc entre deux charges de signe opposé, ou répulsif, donc entre deux charges de même signe, du champ électrique tandis que le champ gravitationnel ne peut être qu'attractif.

Pourquoi la Lune est-elle un satellite ?
C'est grave au champ gravitationnel de la Terre que la Lune tourne autour de notre belle planète.

Le principe de l'analogie avec le champ électrique

  • L'analogie repose sur la similitude des lois de Coulomb (électromagnétisme) et loi de Newton (gravitation).
  • Il est souvent inutile de faire les calculs de champs gravitationnels à partir de répartitions de masses, on procède plutôt par analogie avec les résultats connus de l'électrostatique.

La force d'interaction gravitationnelle, tout comme la force d'interaction électrostatique, est une force conservative. Ainsi, elles représentent toutes les deux le gradient d'une énergie potentielle. Dans ce cas, il est alors possible d'adapter absolument tous les calculs de champ et de potentiel étudiés dans le cadre du cours sur la distribution de masses dans le but de calculer le champ et le potentiel gravitationnels en un point définis de l'espace. Il en va de même avec le théorème de Gauss.

Remarque

Il peut être intéressant de mentionner que la force électrique fondamentale, également appelée force de Coulomb, peut être utilisée comme fondement de l'électrostatique. Ainsi, on peut déduire de ce fondement le théorème de Gauss.

C'est donc pour cela que l'on peut dire que la ressemblance formelle, c'est-à-dire les similarité des formules mathématiques, entre la force de Coulomb et la force gravitationnelle est une base solide permettant de fonder l'analogie entre les deux classes de phénomènes énoncés dans ce cours.

Ainsi, à partir de la force de Coulomb et par superposition, on peut être capable d'établir des expressions intégrales du champ électrique en fonction de la distribution de charge. Bien que ces calculs soient trop complexes pour être utiles dans les calculs analytiques, ils peuvent être très utiles afin de déterminer un champ électrique par résolution numérique, c'est-à-dire par ordinateur.

Notons qu'il est possible de démontrer ces formules en utilisant le théorème de superposition.

Rappel

La gravitation correspond à une force attractive qui s'exerce à distance entre deux corps qui ont une masse.

Rappeler les différents types d'écoulement

Quel est l'impact de la viscosité sur l'écoulement d'un fluide ?
Il existe pour les fluides différentes façon de s'écouler.

L'écoulement laminaire

Quand on parle d'écoulement laminaire en mécanique des fluides, on évoque le mode d'écoulement d'un fluide dans le cas où l'ensemble du fluide s'écoule plus ou moins dans la même direction et cela sans que les différences locales ne se contrarient. On est alors en opposition au régime turbulent au cours duquel l'écoulement produit des tourbillons qui vont mutuellement se contrarier.

Ainsi, lorsque l'on cherche à faire circuler un fluide dans un tuyau, on cherche à mettre en place un écoulement laminaire afin qu'il y ait moins de pertes de charge. Mais on cherche aussi à mettre en place un écoulement laminaire lorsque l'on cherche à faire voler un avion afin que le vol soit stable et prévisible à l'aide d'équations.

L'écoulement laminaire d'un point de vue microscopique

Il est toujours intéressant d'apporter un point de vue microscopique à une réflexion. en effet, alors que rien ne se voit d'un point de vue macroscopique, il peut se passer beaucoup de chose dans le monde du très petit.

Lorsque l'on observe un écoulement laminaire à l'échelle microscopique, on peut observer que deux particules de fluides qui sont voisines à un instant défini resteront voisines lors des prochains moments d'observation. Par cette observation, on peut décrire un champ de vitesse grâce à l'utilisation de techniques classiques d'analyse mathématique.

Dans le cas où l'écoulement devient turbulent, celui-ci devient alors sans organisation apparente. Les techniques classiques d'analyse mathématique utilisées précédemment ne suffisent alors plus pour décrire le champ de vitesse.

L'écoulement laminaire d'un point de vue macroscopique

Tout comme la notion de régime turbulent, la notion de régime laminaire est très fortement liée à la viscosité du fluide en mouvement. En effet, lorsque le liquide se situe dans une conduite ou autour d'un obstacle, alors, au voisinage d'une paroi sur laquelle la vitesse relative du fluide est nulle, on peut alors observer l'apparition de fortes variations de vitesse au sein desquelles la viscosité est impliquée.

De façon plus précise, on peut dire que l'écoulement visqueux est caractérisé grâce à un nombre sans dimension que l'on appelle le nombre de Reynolds. Ce nombre permet alors de mesurer l'importance relative des forces inertielles qui sont liées à la vitesse et des forces de frottement qui sont liées à la viscosité.

Ainsi, si ces dernières sont prépondérantes, alors on peut dire que le frottement, qui se produit entre deux couches de fluides, maintient leur cohésion : on obtient ainsi un écoulement laminaire.

Dans le cas où le nombre de Reynolds augmente au-delà d'un certain seuil, alors l'écoulement est déstabilisé. Dans ce cas, il peut y avoir un régime turbulent qui va se mettre en place après qu'une phase de transition, plus ou moins importante, ait eu lieu.

Le nombre de Reynolds, noté Re, correspond à un nombre sans dimension qui est utilisé en mécanique des fluides. Cette grandeur permet alors de caractériser un écoulement, en particulier la nature de son régime. Il est ainsi possible de savoir si un écoulement est laminaire, transitoire ou turbulent.

Le régime turbulent

Lorsque vous subissez des turbulences en plein vol, c'est tout simplement que votre avion entre dans une zone où le flux d'air provoque une zone d'écoulement turbulent.

Le terme turbulence correspond à l'état de l'écoulement d'un fluide, qu'il soit liquide ou gaz, au sein duquel la vitesse présente un caractère tourbillonnaire. On entend par là la présence de tourbillons dont la taille, la localisation mais également l'orientation vont, de façon constante, varier.

On peut caractériser un écoulement turbulent par une apparence très désordonnée mais également par un comportement qui restera difficilement prévisible et par l'existence de nombreuses échelles spatiales et temporelles.

Il est possible de voir apparaître ce type d'écoulement dans le cas où la source d'énergie cinétique, qui provoque la mise en mouvement du fluide, est relativement intense devant les forces de viscosité que le fluide va opposer pour se déplacer. On peut alors opposer cet écoulement au régime laminaire qui est régulier.

Pour étudier le comportement complexe des écoulements turbulent, il faut, dans la plupart des cas, utiliser la voie statistique. En effet, on peut, de ce fait, considérer que cette étude fait partie intégrante de la physique statistique afin de traduire que, lors d'un écoulement, les forces d'inertie l'emportent sur les forces de viscosité.

Écoulement de Poiseuille et loi de Poiseuille

La loi de Poiseuille, que l'on appelle aussi loi de Hagen-Poiseuille, permet de décrire ce que l'on appelle écoulement laminaire, c'est à dire un écoulement sous la forme de filets de liquide parallèles, d'un liquide visqueux au sein d'une conduite cylindrique. On appelle logiquement écoulement de Poiseuille tout écoulement qui suit une loi de Poiseuille.

De façon générale, la loi de Poiseuille permet de décrire de façon théorique la relation existante entre le débit d'un écoulement et la viscosité d'un fluide, mais aussi la différence de pression aux extrémités de la canalisation ainsi que la longueur et le rayon de cette même canalisation.

Écoulement torrentiel et fluvial

On parle d'écoulement torrentiel et d'écoulement fluvial dans le cas d'un équilibre de l'écoulement d'un liquide dans un canal ou encore un cours d'eau ou une conduite à la surface libre.

De façon plus précise, on parle d'écoulement torrentiel dans le cas où le nombre de Froude est supérieur à 1, ce qui signifie alors que la vitesse du courant est supérieure à la vitesse d'une vague de liquide étudié. Dans le cas contraire, on parle d'écoulement fluvial.

Notons qu'il est possible de passer d'un régime torrentiel à un régime fluvial lorsqu'il y a un ressaut hydraulique, ce qui signifie qu'il y a une élévation du niveau d'eau ou encore lorsqu'il y a une dissipation d'énergie. Il est d'ailleurs possible d'observer ce phénomène dans un évier de cuisine.

Écoulement polyphasique

On parle d'écoulement polyphasique lorsque l'on observe un écoulement de fluide comportant plusieurs phases. On peut, par exemple, étudier le comportement d'un fluide qui comporte en son sein des bulles de gaz ou encore étudier le comportement d'un mélange de deux fluides non miscibles.

Écoulement et viscosité

On appelle viscosité l'ensemble des phénomènes de résistance à l'écoulement qui peuvent se produire dans la masse d'une matière dans le cas d'un écoulement que l'on considère comme étant uniforme et sans turbulence. De façon logique, plus la viscosité sera élevée, plus la capacité que possède le fluide à s'écouler facilement va diminuer. De plus, lorsque la viscosité est élevée, l'énergie qui sera dissipée par l'écoulement sera importante.

La viscosité de cisaillement, qui peut être comprise comme une résistance à l'écoulement des différentes couches d'un fluide les unes sur les autres, englobe plusieurs grandeurs physiques qui permettent de la caractériser :

  • La viscosité dynamique qui est la grandeur la plus utilisée. En effet, on se réfère généralement à cette grandeur lorsque l'on parle de viscosité sans précision. Elle permet de faire le lien entre la contrainte de cisaillement et le gradient transversal de la vitesse d'écoulement dans la matière. C'est donc pour cela que l'on appelle cette grandeur vitesse dynamique.
  • La viscosité cinématique, cette grandeur peut être déduise de la vitesse dynamique ;
  • La seconde viscosité qui caractérise la résistance du fluide à des variations de volume ;
  • Et pour finir, la viscosité de volume qui correspond à la combinaison de la viscosité dynamique et la seconde viscosité.

De ce fait, on peut considérer la viscosité comme correspondant à une quantité tensorielle bien qu'il reste possible que, selon les cas, on puisse exprimer cette grandeur sous la forme d'une grandeur scalaire.

La viscosité (de cisaillement) peut être vue comme la résistance à l'écoulement des différentes couches d'un fluide les unes sur les autres. Plusieurs grandeurs physiques caractérisent la viscosité :

En ce qui concerne les liquides, alors que l'inverse est vrai pour les gaz, la viscosité va tendre, de façon générale, à diminuer lorsque la température va augmenter. De plus, croire que la viscosité d'un fluide donné augmente avec la densité est faux car ce n'est pas nécessairement vrai. On peut en effet prendre l'exemple de l'huile qui, pourtant moins dense que l'eau (0,92 pour l'huile de Colza à 20°C et 1 pour l'eau à 20°C) alors que l'huile est, de façon très nette, plus visqueuse que l'eau.

Pour ce qui est des huiles de mécaniques, elles seront classées selon leur viscosité puisque l'huile utilisée dans les moteurs va varier selon les besoins de lubrifications de celui-ci mais aussi selon les températures auxquelles l'huile mécanique sera soumise lorsque le moteur sera en marche.

La viscosité peut varier

Comme expliqué précédemment, la viscosité d'un fluide varie selon la température, mais aussi les actions mécaniques auxquelles ce fluide est soumis. Ainsi, afin de déterminer l'importance de l'effet de la température sur la viscosité d'un fluide, on va utiliser un indice appelé indice de viscosité. De façon logique, plus cet indice est grand, moins la température aura une influence sur la viscosité du fluide étudié.

La poussée d'Archimède

La poussée d'Archimède est un phénomène physique qui décrit le comportement de tout corps plongé dans un fluide qu'il soit liquide ou gazeux soumis à un champ de gravité.

Elle est nommée ainsi en l'honneur d'Archimède de Syracuse, un très grand scientifique grec de 200 avant J.-C.

Elle est causée par l'augmentation de la pression du fluide avec la profondeur. Comme la pression exercée sur la partie basse du corps est supérieure à celle exercée sur la partie haute, le corps est poussé verticalement vers le haut.

Voici la formulation d'origine de cette loi physique :

Tout corps plongé dans un fluide au repos, entièrement mouillé par celui-ci ou traversant sa surface libre, subit une force verticale, dirigée de bas en haut et opposée au poids du volume de fluide déplacé ; cette force est appelée poussée d'Archimède.

Pour que le théorème s'applique il faut que le fluide immergeant et le corps immergé soient au repos. Il faut également qu'il soit possible de remplacer le corps immergé par du fluide immergeant sans rompre l'équilibre.

Voici l'équation qui en résulte :

[ overrightarrow { P } _ { A } = M _ { f } overrightarrow { g } ]

Avec :

  • Mf< la masse du fluide contenu dans un volume V et déplacé ;
  • g la valeur du champ de pesanteur, de 9,81 N/kg à la surface de la Terre.
Quelques exemples

La poussée d'Archimède intervient dans de nombreux cas de notre vie de tous les jours.

Par exemple, c'est la poussée d'Archimède qui fait qu'on ne coule pas lorsque l'on fait la planche sur l'eau. C'est aussi grâce à elle qu'un glaçon flotte à la surface d'un verre même lorsqu'il fond.

La poussée d'Archimède est aussi très utile à de nombreux appareils flottant ou volant. C'est grâce à elle que les bateaux ne coulent et que les sous-marins peuvent gérer leur profondeur. Les ballons dirigeables et les montgolfières peuvent aussi voler dans le ciel grâce à la poussée d'Archimède et au gaz moins dense que l'air qu'ils contiennent.

>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !