Comment tracer une courbe avec une calculatrice ?
Pour réussir votre année, il vous faudra impérativement maîtriser votre calculatrice graphique.

Le bloc 2 introduit les bases de la dynamique newtonienne. Il est essentiel de ne pas se limiter à l’étude de situations simplifiées à l’excès afin de parvenir à une solution analytique. Au contraire il convient d’habituer les étudiants à utiliser les outils de calcul numérique (calculatrices graphiques, logiciels de calcul numérique...) qui permettent de traiter des situations réelles dans toute leur richesse (rôle des frottements, effets non linéaires...). Le programme insiste sur le portrait de phase considéré comme un regard complémentaire sur les équations différentielles. Les portraits de phase ne doivent pas donner lieu à des débordements calculatoires : leur construction explicite est donc limitée au cas des oscillations harmoniques au voisinage d’une position d’équilibre. En revanche les étudiants devront savoir interpréter un portrait de phase plus complexe qui leur serait fourni ou qu’ils auraient obtenu expérimentalement ou à l’aide d’un logiciel.

Notions et contenus ainsi que les capacités exigibles

Loi de la quantité de mouvement

  • Forces. Principe des actions réciproques.
    • Établir un bilan des forces sur un système, ou plusieurs systèmes en interaction et en rendre compte sur une figure.
    • Proposer un protocole expérimental permettant d’étudier une loi de force.
  • Quantité de mouvement d’un point et d’un système de points. Lien avec la vitesse du centre d’inertie d’un système fermé.
    • Établir l’expression de la quantité de mouvement d’un système restreint au cas de deux points sous la
      forme p = mv(G).
  • Référentiel galiléen. Principe de l’inertie.
    • Décrire le mouvement relatif de deux référentiels galiléens.
  • Loi de la quantité de mouvement dans un référentiel galiléen.
    • Déterminer les équations du mouvement d'un point matériel ou du centre d'inertie d’un système fermé.
  • Mouvement dans le champ de pesanteur uniforme.
    • Mettre en équation le mouvement sans frottement et le caractériser comme un mouvement à vecteur- accélération constant.
  • Influence de la résistance de l’air.
    • Approche numérique : Prendre en compte la traînée pour modéliser une situation réelle.
    • Approche numérique : Exploiter une équation différentielle sans la résoudre analytiquement : analyse en ordres de grandeur, détermination de la vitesse limite, utilisation des résultats fournis par un logiciel d'intégration numérique.
    • Proposer un protocole expérimental de mesure de frottements fluides.
  • Pendule simple.
    • Établir l’équation du mouvement du pendule simple.
    • Justifier l’analogie avec l'oscillateur harmonique dans le cadre de l'approximation linéaire.
    • Établir l’équation du portrait de phase (intégrale première) dans ce cadre et le tracer.
  • Lois de Coulomb du frottement de glissement dans le seul cas d’un solide en translation.
    • Exploiter les lois de Coulomb fournies dans les trois situations : équilibre, mise en mouvement, freinage.
    • Formuler une hypothèse (quant au glissement ou non) et la valider.
Comment peut-on connaître les forces de frottement ?
Les mouvements du pendule, avec ou sans prise en compte des frottements, est un exemple à maîtriser pour réussir votre année scolaire.

Approche énergétique du mouvement d'un point matériel

  • Puissance et travail d’une force.
    • Reconnaître le caractère moteur ou résistant d'une force. Savoir que la puissance dépend du référentiel.
  • Loi de l’énergie cinétique et loi de la puissance cinétique dans un référentiel galiléen.
    • Utiliser la loi appropriée en fonction du contexte.
  • Énergie potentielle. Énergie mécanique.
    • Établir et connaître les expressions des énergies potentielles de pesanteur (champ uniforme), énergie potentielle gravitationnelle (champ créé par un astre ponctuel), énergie potentielle élastique, énergie électrostatique (champ uniforme et champ créé par une charge ponctuelle).
  • Mouvement conservatif et mouvement conservatif à une dimension.
    • Distinguer force conservative et force non conservative.
    • Reconnaître les cas de conservation de l'énergie mécanique.
    • Utiliser les conditions initiales.
    • Déduire d’un graphe d’énergie potentielle le comportement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle.
    • Expliquer qualitativement le lien entre le profil d’énergie potentielle et le portrait de phase.
  • Positions d’équilibre. Stabilité.
    • Déduire d’un graphe d’énergie potentielle l’existence de positions d’équilibre, et la nature stable ou instable de ces positions.
  • Petits mouvements au voisinage d’une position d’équilibre stable, approximation locale par un puits de potentiel harmonique.
    • Identifier cette situation au modèle de l’oscillateur harmonique.
    • Approche numérique : utiliser les résultats fournis par une méthode numérique pour mettre en évidence des effets non linéaires.
  • Barrière de potentiel.
    • Évaluer l’énergie minimale nécessaire pour franchir la barrière.
Les meilleurs professeurs de Physique - Chimie disponibles
Houssem
4,9
4,9 (139 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Greg
5
5 (173 avis)
Greg
130€
/h
Gift icon
1er cours offert !
Moujib
5
5 (87 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Patrick
5
5 (36 avis)
Patrick
55€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (121 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
4,9
4,9 (83 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (56 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (95 avis)
Ahmed
50€
/h
Gift icon
1er cours offert !
Houssem
4,9
4,9 (139 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Greg
5
5 (173 avis)
Greg
130€
/h
Gift icon
1er cours offert !
Moujib
5
5 (87 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Patrick
5
5 (36 avis)
Patrick
55€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (121 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
4,9
4,9 (83 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (56 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (95 avis)
Ahmed
50€
/h
Gift icon
1er cours offert !
C'est parti

Connaître les différents types de mouvement

Comment caractériser la chute d'un objet ?
Le mouvement de chute libre est également un mouvement de base à maîtriser au cours de votre scolarité.
  • Lorsqu’un solide est soumis à des actions extérieures qui se compensent on dit qu’il est pseudo-isolé. Un solide qui ne subirait aucune action extérieure serait dit isolé, ce serait approximativement le cas d’un solide perdu, très très loin de toute étoile ou planète, dans l’espace interstellaire.
  • Le centre d’inertie d'un objet, et ce quelle que soit l’histoire antérieure du système, s’il est pseudo isolé, correspond à un et un seul des points de sa trajectoire qui est toujours en mouvement rectiligne et uniforme. C’est par exemple au centre d’inertie d’un solide que s’exerce le poids du système.
  • On dit que deux objets A et B sont en interaction, si l'objet A exerce une action qui se manifeste par ses effets sur l'objet B, et si réciproquement, l'objet B agit sur l'objet A.
  • On considère qu'une force correspond à l’action exercée par chacun des corps sur l’autre.
  • Puisque toute interaction est réciproque, on choisit d’étudier un participant, le système, et les forces qui s’exercent sur lui. Un système correspond à l’ensembles des objets dont on étudie le mouvement. Ainsi on sépare l’Univers en deux : le système et l’extérieur. Pour résumer, tout ce qui n’est pas le système est appelé extérieur et le système subit des forces exercées par ce qui est intérieur au système, appelées forces extérieures
  • Qu’est-ce qu’un système déformable ?
    • Un système déformable correspond système dont la distance entre deux de ces points quelconques peur varier.
  • Qu’est-ce qu’un système indéformable ?
    • Un système indéformable correspond à un système dont la distance entre deux de ce point quelconque est toujours constante. Un tel système est alors appelé un solide.
  • On considère qu'une force localisée correspond à une force qui ne s’applique qu'en un point d’un objet ou sur un objet ponctuel. Par exemple un fil tire un objet avec une force T localisée au point d’accrochage.
  • On considère qu'une force répartie correspond à une force qui s’applique sur un ensemble de points répartis sur une surface ou dans un volume de l’objet. Par exemple le poids P est réparti dans tout le volume d’un objet.
  • On considère qu'une force à distance correspond à une force qui s’exerce entre 2 objets pouvant être séparés par de l’air, de l’eau, du vide… Il y a 3 sortes de forces à distance :
    • Les forces de gravitation : Elles s’exercent entre les astres ; entre la terre et les objets terrestres. Le poids d’un corps est essentiellement une force de gravitation. Ce sont des forces attractives.
    • Les forces électriques : Elles s’exercent entre deux objets portant des charges électriques. Elles peuvent être aussi bien attractives que répulsives.
    • Les forces magnétiques : Elles s’exercent entre des aimants ou entre des aimants et certains matériaux (en particulier le fer). Elles aussi peuvent être attractives ou répulsives.
  • Pour considérer une force comme étant une force de contact, il faut obligatoirement qu’il y ait contact entre les deux objets pour que naisse cette fameuse force de contact. Par exemple la force de traction d’un fil, mesurée par la tension du fil, s’applique au point de contact objet-fil.
  • Un effet dynamique correspond à une force qui peut modifier le mouvement d’un système, c’est à dire modifier son vecteur vitesse.
  • Les effets statiques existant sont :
    • L'équilibre : on considère qu'un système est en équilibre si tous ses points sont au repos dans le référentiel d’étude.
    • Les effets d’une force : on considère qu’une force peut contribuer à l’équilibre d’un système et déformer un système en équilibre ou non.
  • Qu’est-ce qu’un solide ponctuel ?
    • Un solide ponctuel correspond à un solide dont les dimensions sont très inférieures aux autres dimensions du problème et qui peut donc être considéré comme un point.

Pour étudier le mouvement d’un système on a toujours besoin de se fixer un référentiel : c’est un objet par rapport auquel on étudiera le mouvement de notre système.

Définition : La trajectoire d’un point matériel est l’ensemble des positions successives occupées par ce point au cours du temps. Elle dépend du référentiel choisi.

En simplifiant, on peut définir le référentiel comme quelque chose correspondant au milieu au sein duquel on étudie le mouvement. En effet, si nous choisissons de prendre l'exemple du voyageur assit dans un train en marche alors le référentiel vas changer selon l'observateur :

  • Par rapport à un observateur sur le quai, le voyageur est en mouvement
  • Par rapport à un observateur dans le train, le voyageur est immobile.

Ainsi, il est possible de conclure que, pour décrire le mouvement d’un mobile, il faut choisir un repère d’espace ou référentiel. La trajectoire correspond à l’ensemble de toutes les positions successives qu’occupe un point du mobile au cours du temps. La trajectoire peut être curviligne, c'est à dire en vague, circulaire, donc en forme de rond, ou rectiligne.

  • Mouvement rectiligne : la trajectoire est une droite
  • Mouvement circulaire : la trajectoire est un arc de cercle
  • Mouvement curviligne : la trajectoire est une courbe quelconque, plane ou non.

Deux types de mouvement sont très importants dans l’étude des systèmes :

  • La translation : Dans un mouvement de translation, chaque segment de droite, appartenant au mobile, reste parallèle à lui-même, au cours du déplacement et tous les points du mobile ont des trajectoires identiques de même longueur.
  • La rotation : Dans un mouvement de rotation, tous les points du mobile décrivent des cercles ou des arcs de cercles centrés sur une droite fixe que l'on appelle axe de rotation. On peut notamment illustrer ce mouvement avec l'exemple des aiguilles d’une horloge.
    • Si la trajectoire est une droite, la translation est rectiligne, comme dans le cas d'un ascenseur.
    • Si la trajectoire est une courbe, la translation est curviligne, comme dans le cas d'un téléphérique.
    • Si la trajectoire est un cercle ou un arc de cercle, la translation est circulaire, comme dans le cas d'une grande roue.

Définition : Une translation correspond à une droite passant par 2 points quelconques du solide qui reste parallèle au cours du mouvement

Définition : Une rotation correspond à un mouvement où tous les points décrivent des cercles dont les centres sont alignés et tous les plans sont parallèles.

Les trois lois de Newton à connaître

Quelle est l'histoire de Newton et de la pomme ?
D'après la légende, les découvertes de Newton concernant la gravité sont liées à la chute d'une pomme.

Première loi de Newton : principe d'inertie

Système isolé ou pseudo isolé

Un système est isolé s'il n'est soumis à aucune force Un système est pseudo isolé si la Σ des forces appliquée à ce système est nulle : Σ F = 0

Énoncé de la première loi de Newton

Dans un référentiel galiléen, si la somme vectorielle des forces extérieures qui s'exercent sur un système est nulle (c'est-à-dire si le système est pseudo isolé) alors le vecteur VG du centre d'inertie du système est constant (et réciproquement).

La deuxième loi de Newton

Dans un référentiel galiléen, si la somme vectorielle des forces appliquées à un système est non nulle, alors le vecteur vitesse du centre d'inertie du système varie. Le vecteur variation de vitesse du centre d'inertie et la somme vectorielle des forces extérieures appliqués au système ont même direction et même sens.

La troisième loi de Newton : principe des actions réciproques

Si un système A exerce une action mécanique sur un système B, modélisée par la force FA/B, alors le système B exercent une action mécanique sur, modélisée par la force FA/B telle que FA/B = - FA/B

Le référentiel galiléen

Un référentiel est un solide par rapport auquel on étudie un mouvement On prend souvent comme référentiel le solide Terre.

  • Le référentiel géocentrique (construit à partir des centres de la Terre et de trois étoiles lointaines qui paraissent fixes) est utilisé pour étudier le mouvement des satellites terrestres.
  • Le référentiel héliocentrique (construit à partir des centres du soleil et de trois autres étoiles) est utilisé pour étudier les voyages interplanétaires ou le mouvement des planètes autour du Soleil.

Un repère d'espace orthonormé, lié à un référentiel, est un système d'axes orthogonaux et normés, muni d'une origine O. Dans ce repère, on peut exprimer les coordonnées du mobile ponctuel étudié. La trajectoire d'un mobile ponctuel est constituée par l'ensemble des positions successives occupées par le mobile au cours du temps.

Pour calculer la vitesse v moyenne entre deux instants d'un solide, on utilise la formule suivante : Vitesse moyenne (m/s) = distance parcourue (m) / durée du parcours (s) Vecteur vitesse instantanée = dérivée du vecteur position par rapport au temps. Ce vecteur est porté par la tangente à la trajectoire à la date considérée et a toujours le sens du mouvement.

Dans un référentiel galiléen, si la somme vectorielle des forces extérieures appliquées à un solide est nulle (solide pseudo-isolé) alors le centre d'inertie G de ce solide est soit au repos, soit animé d'un mouvement rectiligne uniforme et réciproquement. Un solide peut donc se déplacer même si la somme des forces appliquées à ce solide soit nulle. Dans un référentiel galiléen, si le vecteur vitesse du centre d'inertie d'un solide varie, alors la somme vectorielle des forces extérieures appliquées à ce solide n'est pas nulle et réciproquement.

La direction et le sens de cette somme sont ceux de la variation du vecteur vitesse entre deux instants proches. Dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquées à un solide est égale au produit de la masse M du solide par l'accélération de son centre d'inertie.

A retenir

Un référentiel est dit galiléen, si la première loi de Newton est vérifiée dans ce référentiel. Le référentiel terrestre est considéré comme galiléen si la durée de l'étude n'excède pas quelques minutes. Le référentiel géocentrique est galiléen à condition que l'étude n'excède pas quelque heures. Le référentiel héliocentrique est galiléen. Tout référentiel animé d'un mouvement de translation rectiligne uniforme par rapport à un référentiel galiléen est un référentiel galiléen.

Principe d'inertie

En physique, on appelle inertie d'un corps, dans un référentiel galiléen, une tendance de ce corps à conserver sa vitesse. En effet, lorsqu'il y a absence d'influences extérieures, on parle aussi de forces extérieures, alors tout corps que l'on considère comme ponctuel va perdurer dans un mouvement rectiligne uniforme. Notons que l'on appelle aussi l'inertie, principe d'inertie ou encore loi d'inertie. Puis, lorsque Newton est arrivé, on l'appelle également première loi de Newton. Elle s'énonce ainsi : Un système isolé ou pseudo-isolé initialement au repos ou en mouvement rectiligne uniforme demeure dans son état. On appelle référentiel galiléen tout référentiel au sein duquel le principe d'inertie est vérifié. Même s'il n'existe aucun référentiel galiléen au sens strict. Il est cependant possible de considérer certains référentiels usuels comme galiléen si certaines conditions sont vérifiées :

  • Ainsi, le référentiel terrestre peut être considéré galiléen si on considère un mouvement dont la durée ne dépasse pas quelques minutes dans le but de s'affranchir du mouvement de rotation propre de la Terre.
  • Le référentiel géocentrique peut également être considéré comme étant galiléen si on considère un mouvement dont la durée ne dépasse quelques heures dans le but de s'affranchir du mouvement de rotation de la Terre autour du Soleil.
  • Le référentiel héliocentrique peut aussi être considéré comme étant galiléen car l'impact du mouvement de rotation du Soleil au sein de la galaxie est négligeable.

Les différentes énergies de mouvement

L'énergie cinétique

Tout corps en mouvement en possède une. Elle peut être macroscopique : elle dépend alors de la vitesse du corps en mouvement, et donc du référentiel d'étude microscopique : elle est liée à l'agitation moléculaire. Une augmentation de l'énergie cinétique microscopique se traduit par une augmentation de la température. En résumé, l'énergie cinétique correspond à l'énergie d'un objet en mouvement. La formule est : [ E _ { c } = frac { 1 } { 2 } times m times v ^ { 2 } ] Avec :

  • Ec correspondant à l'énergie cinétique de l'objet étudié avec pour unité le Joule noté J ;
  • m correspondant à la masse de l'objet étudié avec pour unité le kilogramme noté kg ;
  • Et v correspondant à la vitesse de l'objet étudié avec pour unité la mètre par seconde noté m.s-1.

Exemple

Prenons le cas d'un système en translation. Il est important de savoir que la relation définissant l'énergie cinétique ne s'applique pas pour les solides en rotation. L'énergie cinétique d'une voiture qui pèse 1 tonne et qui roule à 130 Km/h est de [ E _ { c } = frac { 1 } { 2 } times 1000 times left( frac { 130 } { 3,6 } right) ^ { 2 } = 652 space 006 text { J } ]

La vitesse

Le moyen le plus simple de sentir la vitesse est lorsque vous roulez sur autoroute ou que vous voyagez en train.

La vitesse est une grandeur physique qui est définie par une évolution face au temps. La vitesse ne définit pas qu’uniquement la vitesse de déplacement mais peut aussi correspondre à la vitesse de réaction chimique ou encore une vitesse de séchage par exemple. En règle générale, une vitesse est égale à la division de la mesure d’une variation telle qu’une longueur, un volume ou encore un poids par la mesure du temps écoulé au cours de cette variation. L’exemple le plus simple est celui de la vitesse de déplacement. Il s’agit d’une distance divisée par un temps comme les mètres par seconde ou les kilomètres par heure.

La masse

En physique, la masse correspond à une grandeur physique positive et intrinsèque d'un corps. De façon plus précise, en physique newtonienne, la masse correspond à une grandeur extensive. Cela signifie alors que la masse d'un corps formé de parties correspond à la somme des masses de ces différentes parties qui le compose. De plus, il est essentiel de noter que la masse est une grandeur conservative. De ce fait, elle reste constante dans le cas d'un système isolé qui n'échange donc pas de matière avec son environnement.

L'énergie potentielle (ou de position)

Elle dépend de la position relative des différentes parties du système : seul un système déformable pourra posséder, à l'échelle macroscopique, de l'énergie potentielle. En résumé, l'énergie potentielle correspond à l'énergie contenue dans un objet au-dessus du sol. La formule est : [ E _ { p } = m times g times h ]

  • Ep correspondant à l'énergie potentielle de l'objet étudié avec pour unité le Joule noté J ;
  • m correspondant à la masse de l'objet étudié avec pour unité le kilogramme noté kg ;
  • g correspondant à l'intensité de pesanteur avec pour unité le Newton par kilogramme noté N.kg-1. A noter que la valeur approximative de g est de 9,81 N.kg-1.
  • Et v correspondant à la vitesse de l'objet étudié avec pour unité la mètre par seconde noté m.s-1.

L'énergie mécanique

L'énergie mécanique Em d'un système est une grandeur macroscopique, somme de son énergie cinétique Ec et de son énergie potentielle Ep. [ E _ { M } left( J right) = E _ { c } left( J right) + E _ { p } left( J right) ] L'énergie mécanique dépend alors du référentiel d'étude.

>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !