Les grandeurs de base

La mole

A quoi sert la mole ?
Il arrivera fréquemment que dans vos TP l'on vous demande de travailler avec certaines quantités de mole d'une matière. Vous serez alors obligé d'effectuer un calcul pour savoir combien cela représente de masse.

La mole est une unité de quantité de matière.

La quantité de matière se note n et s'exprime en mole de symbole mol.

Le nombre d'entités élémentaire contenue dans une mole est appelé Constante d'Avogadro, noté Na.

Il faut savoir que la valeur du nombre d'Avogadro a évolué au court du temps :

  • Avant le 20 Mai 2019, le nombre d'Avogadro, et donc la mole, était défini comme correspondant au nombre d'atome de carbone dans 12 grammes (donc 10-3 kg) de carbone 12. On avait alors : NA = 6,022 140 857 . 1023 mol−1.
  • Or, depuis le 20 Mai 2019, le kilogramme a été redéfini. Ainsi, on fit le choix de définir le nombre d'Avogadro comme étant une constante fixée par convention. Aujourd'hui, la valeur du nombre d'Avogadro est donc : NA = 6,022 140 76 . 1023 mol−1

Il y a proportionnalité entre le nombre N d'entités élémentaires dans un échantillon et sa quantité de matière n :

    \[ N = n \times N _ { A } \]

    \[ n = \frac { N } { N _ { A } } \]

La masse molaire

La masse d'une mole d'atomes est appelée masse molaire atomique, noté M et d'unité g / mol. En chimie, on ne compte pas en nombre d'ions ou d'atomes mais en nombre de paquets, un paquet s'appelle une mole (mol). Une mole contient 6,02 . 1023 entités.

Le nombre de masse d’un atome correspond au nombre de nucléons qu’il contient. Il s’agit donc de la somme du nombre de protons et du nombre de protons qui constituent le noyau de l’atome.

La masse molaire correspond aussi au nombre de nucléons dans le noyau. A = 59, signifie qu'il y a 56 nucléons dans le noyau (et 59 grammes dans une mole).

Dans le tableau périodique, la masse molaire est souvent différente de A à cause des isotopes.

Des isotopes sont des atomes qui possèdent le même nombre de protons mais un nombre différent de neutrons.

La masse

En physique, la masse correspond à une grandeur physique positive et intrinsèque d'un corps.

De façon plus précise, en physique newtonienne, la masse correspond à une grandeur extensive. Cela signifie alors que la masse d'un corps formé de parties correspond à la somme des masses de ces différentes parties qui le compose.

De plus, il est essentiel de noter que la masse est une grandeur conservative. De ce fait, elle reste constante dans le cas d'un système isolé qui n'échange donc pas de matière avec son environnement.

Pour une espèce donnée, la masse m, la quantité de matière n et la masse molaire M sont liés par :

    \[ n = \frac { m } { M } \]

    \[ m = n \times M \]

Les propriétés

La masse peut se manifester au travers de deux propriétés fondamentales :

En effet, en mécanique statique, la masse est correspond à l'un des premières grandeurs facilement mesurables par les gens via le système de pesée puisque celle-ci permet de comparer la masse de l'objet défini avec un masse étalon connue. On appellera alors ce système la masse pesante. C'est ainsi que l'on liera la quantité de matière d'un corps à sa masse.

Tandis qu'en mécanique dynamique, la masse correspond à une grandeur qui intervient dans le principe fondamental de la dynamique comme étant la résistance de la matière au changement de vitesse. En effet, plus la masse d'un corps est importante, plus il faudra exercer une force importante pour modifier la direction ou encore sa vitesse. On appelle alors ce phénomène "masse inerte".

Ainsi, cet aspect de la masse présente un rôle essentiel dans tous les domaines de la dynamique puisqu'elle correspond à une notion présente dans grand nombre de relations de physique classique ou encore dans les calculs qui permettent de les définir. En effet, il est possible de constater une proportionnalité entre la masse inerte et la masse pesante et cela de façon totalement indépendante de la nature du matériau mis en jeu. Cela permet alors de prendre la même unité pour la masse pesante et la masse inerte et donc de pouvoir les définir comme étant égale. Ainsi, cette équivalence a permis de définir un principe d'équivalence.

L'unité

L'unité de masse est le kilogramme dans le Système international d'unités (S.I.).

Comme pour le litre il existe des sous-unités : kg ; hg ; dag ; g ; dg ; cg ; mg.

Attention à ne pas faire comme une majorité et confondre la masse avec le poids. En effet, dans le vocabulaire de la physique, le poids correspond à la force exercée par la gravité sur un corps pesant.

La masse de l'objet dépend de la densité de l’objet mais également du volume

A noter que déclarer que 1 Litre pèse 1 Kilogramme est totalement faux. En effet, un litre d'huile pèse 800 g et non pas 1 kg.

Le volume

On utilise le mètre cube de symbole m3.
On utilise plutôt le litre en chimie (L).

1 m3 = 1000 L et 1 mL = 1 cm3

La masse volumique d'un échantillon est le rapport de la masse m de cet échantillon à son volume v. (ρ est la masse volumique)

    \[ \rho = \frac { m } { V } \]

ou

    \[ m = \rho \times v \]

ou

    \[ v = \frac { m } { \rho } \]

La densité d'un liquide est égale au quotient de la masse d'un volume v par la masse d'un même volume d'eau. (la densité s'exprime sans unité)

    \[ d = \frac { \text { masse d un volume v de liquide } }{ \text { masse d un volume v d'eau } } \]

Définition

Selon le domaine dans lequel ce mot est utilisé, la définition peut être différente. Mais, dans tous les cas, le volume représente une grandeur qui permet la mesure de l'extension d'un objet ou d'une partie de l'espace.

  • En sciences physique, le volume d'un objet permet de mesurer l'extension dans l'espace physique que celui-ci possède et ce dans les trois directions de façon simultanée et de façon similaire à l'aire d'une figure dans le plan qui, quant à elle, mesure l'extension que celle-ci possède dans deux directions de façon simultanée.
  • En mathématiques, le volume d'une partie de l'espace géométrique correspond à sa mesure dans le sens de la théorie de la mesure de Lebesgue.

Il peut être intéressant de connaître la notion de volume afin de déduire la masse d'un objet défini grâce notamment à la bien connue masse volumique !

La pression

La pression correspond à une grandeur physique qui permet de traduire les échange de quantité de mouvement au sein d'un système thermodynamique, notamment au sein d'un solide ou encore d'un fluide. On peut alors définir la pression comme correspondant à l'intensité de force que va exercer une fluide par unité de surface.

La pression est une grandeur scalaire, voire tensorielle, intensive.

Comment mesurer la pression atmosphérique ?
La pression atmosphérique a une incidence directe sur le temps et les précipitations. Le baromètre est un outil de mesure utilisé en météorologie afin de prévoir le temps qu'il fera.

Il faut être prudent lorsque l'on parle de la pression. En effet, nombreux sont ceux qui parlent de pression exercée par un fluide sur une paroi pour parler de la force pressante que le fluide va exercer par unité d'aire de la paroi. Cependant, la force correspond plutôt à une grandeur vectorielle que l'on défini localement alors que la pression correspond à une grandeur scalaire qui est définie en tout point du fluide concerné.

Les unités de pression

L'unité de pression est le Pascal noté (Pa), même si l'on parle parfois du Bar qui, lui, n'est pas une unité du Système International.

L'analyse dimensionnelle de la pression permet de montrer que celle-ci est homogène à une force surfacique (1 Pa = 1 N/m²) comme à une énergie volumique (1 Pa = 1 J/m3).

Quelques formules

La pression p, le volume V, la quantité de matière n, et la température T d'un gaz sont liés par :

    \[ P \times V = n \times R \times T \]

Avec R = 8,31 USI

Le volume molaire d'un gaz Vm est le volume occupé par 1 mole de ce gaz dans des conditions de température et de pression donnés. On peut déterminer ainsi le volume molaire par la formule suivante :

    \[ V _ { m } = \frac { R \times T } { P }\]

En sachant que Vm s'exprime en L.mol-1

Pour ce qui est des gaz, le volume V et la quantité de matière n sont liés par :

    \[ n = \frac { V } { V _ { m } } \]

    \[ V = n \times V _ { m } \]

Les meilleurs professeurs de Physique - Chimie disponibles
Greg
5
5 (120 avis)
Greg
120€
/h
Gift icon
1er cours offert !
Houssem
4,9
4,9 (111 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (75 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (46 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (85 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chrys & chris
5
5 (130 avis)
Chrys & chris
78€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (94 avis)
Antoine
50€
/h
Gift icon
1er cours offert !
Philippe
4,9
4,9 (31 avis)
Philippe
32€
/h
Gift icon
1er cours offert !
Greg
5
5 (120 avis)
Greg
120€
/h
Gift icon
1er cours offert !
Houssem
4,9
4,9 (111 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (75 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (46 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (85 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chrys & chris
5
5 (130 avis)
Chrys & chris
78€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (94 avis)
Antoine
50€
/h
Gift icon
1er cours offert !
Philippe
4,9
4,9 (31 avis)
Philippe
32€
/h
Gift icon
1er cours offert !
C'est parti

Les réactions chimiques

Une réaction d'oxydoréduction, également appelée réaction redox, correspond à une réaction chimique au cours de laquelle a lieu un transfert d'électron. C'est-à-dire une réaction durant laquelle une espèce chimique dite oxydant reçoit un ou plusieurs électrons d'une autre espèce chimique dite réducteur.

Un oxydant, également appelé agent d'oxydation, correspond à un ion, un corps simple ou un composé qui, lors d'une réaction d'oxydoréduction, reçoit un ou plusieurs électrons d'une autre espèce chimique. Lavoisier mettra en évidence en 1772, suite à ses manipulations du mercure, le rôle du dioxygène dans certaines réactions d'oxydoréduction. D'où le nom oxydation qui signifie "combinaison avec l'oxygène".

Un réducteur, également appelé agent de réduction, correspond à un ion, un corps simple ou un composé qui, lors d'une réaction d'oxydoréduction, cède un ou plusieurs électrons à une autre espèce chimique. Réduction quant à lui signifie "l'extraction d'un métal de son oxyde", une définition connue en métallurgie.

Les réactions d'oxydo-réduction forment une grande famille puisqu'elles comprennent de nombreuses réactions chimiques. En effet, elles interviennent dans les combustions, certains dosages métallurgiques mais également la corrosion des métauxl'électrochimie et la respiration cellulaire.

Ces réactions sont alors essentielles puisqu'elles jouent un rôle fondamental en biologie : elles permettent la transformation de l'oxygène en eau, de formule H2O, au sein des organismes vivants. Elles sont également massivement utilisées dans l'industrie humaine, notamment afin d'obtenir de la fonte à partir de différents minerais composés d'oxyde de fer grâce à une réduction, puis de fer et d'acier à partir de la fonte grâce à une réaction d'oxydation.

Ces différentes utilisations peuvent être expliquée par l'extrême mobilité de l'électron, sa légèreté mais également son omniprésence dans toutes les formes de la matière.

Les demi-équations

Puisque dans une réaction d'oxydo-réduction, le réducteur s'oxyde, c'est la réaction d'oxydation et l'oxydant se réduit, c'est la réaction de réduction, l'oxydoréduction se compose donc de deux demi-réactions : une oxydation et une réduction.

Elles se présentent sous la forme suivante :

  • Oxydation
    • réducteur(1) = oxydant(1) + n e-
  • Réduction
    • oxydant(2) + n e- = réducteur(2)
  • Oxydoréduction qui représente donc la "somme" de l'oxydation et de la réduction
    • oxydant(2) + réducteur(1) → oxydant(1) + réducteur(2)

Notons que dans les demi-équation, les flèches n'apparaissent que si la réaction est totale, c'est à dire quand K > 10 000

La réaction acido-basique

Acide et base selon Brönsted

Un acide est une espèce chimique capable de céder un proton H+.

    \[ AH \rightleftarrows A ^ { - } + H ^ { + } \]

Une base est une espèce chimique capable de capter un proton H+.

    \[ B + H ^ { + } \rightleftarrows BH ^ { + } \]

On obtient donc une réaction acido-basique :

    \[ AH + B \rightleftarrows A ^ { - } + BH ^ { + } \]

Dans cet exemple, on peut alors parler de :

  • Couple AH/A-
  • Couple BH+/B

Il y a un transfert d'un proton H+ entre l'acide d'un couple et la base d'un autre couple.
A chaque acide est associé une base qui est dite base conjuguée (réciproquement). Les deux forment un couple Acide/Base.

Le pH

Quelle est l'acidité d'un citron ?
Le citron, et les agrumes en général sont très acides. Par exemple, celui du citron peut descendre à 2 et celui du pamplemousse à 3.

Le pH, ou encore potentiel hydrogène, correspond à une mesure de l'activité chimique de ce qu'on appelle les hydrons dans une solution. Mais vous les connaissez plus certainement sous le nom de protons ou encore ions hydrogènes. De façon plus particulière, ces protons, dans une solution aqueuse, se présent sous la forme de l'ion hydronium qui représente le plus simple des ions oxonium.

Le pH est, le plus souvent, utilisé afin de mesurer l'acidité ou encore la basicité de la solution. On peut alors la déterminer avec l'échelle suivant dans le cas d'un milieu aqueux à 25°C :

  • une solution de pH égal à 7 est considérée comme étant neutre ;
  • une solution de pH inférieur à 7 est considérée comme étant acide. De ce fait, plus son pH diminue, plus elle est acide ;
  • une solution de pH supérieur à 7 est considérée comme étant basique. De ce fait, plus son pH augmente, plus elle est basique.

Mais la définition que nous connaissons aujourd'hui du pH, définition de Sorensen, n'a été officiellement reconnue qu'à partir du milieu du XXe siècle par l'UICPA.

Cette définition est donc celle que nous retrouvons dans les manuels scolaires et s'énonce ainsi :

    \[ pH = - \log \left( a _ { \text { H } } \right) \]

Avec aH, également noté aH+ ou [H+], qui correspond à l'activité des ions hydrogène H+. aH correspond donc à une grandeur sans dimension tout comme le pH.

Néanmoins, cette définition ne nous permet pas d'obtenir des mesures directes du pH ni même des calculs. En effet, le pH dépend uniquement de l'activité des ions hydrogènes. De ce fait, le pH dépend de plusieurs autres facteurs découlant de cette activité. On peut par exemple parler de l'influence du solvant ou encore de la température.

Il reste cependant possible d'obtenir des valeurs approchées du pH en utilisant ce calcul. Pour cela, il est nécessaire de faire appel à des définitions de l'activité.

Cette définition formelle ne permet pas des mesures directes de pH, ni même des calculs. Le fait que le pH dépende de l’activité des ions hydrogène induit que le pH dépend de plusieurs autres facteurs, tels que l’influence du solvant. Toutefois, il est possible d’obtenir des valeurs approchées de pH par le calcul, à l’aide de définitions plus ou moins exactes de l’activité.

Remarque :

le p de pH représente la fonction "- log" donc ici - log (H). Donc si on parle de pOH ou de pKa, cela signifie que l'on parle de - log (OH) et de - log (Ka).

Exercice 1

Décrire la constitution des noyaux suivants et indiquer leur point commun:

Exercice 2

En classe, Pierre et Jean, de masse identique m = 50 kg, sont assis l'un à côté de l'autre.

  1. Donner les caractéristiques des forces d'interactions gravitationnelle qu'ils exercent l'un sur l'autre ( les élèves seront assimilés à deux points matériels distants de 50 cm ).
  2. Comparer la valeur des forces précédentes à celle que la Terre, assimilée à une sphère homogène, exerce sur chaque élève.
Quelle est la différence entre le poids et la masse ?
Attention à ne pas confondre poids et masse.
La masse correspond à ce qu'on pèse en kilos et le poids est ce que l'on pèse à la surface de la Terre en newtons (N). Pour faire simple, si votre masse est la même sur la Terre que sur la Lune, votre poids sur la Lune sera inférieur à celui sur la Terre, tout cela à cause de la gravité.

Exercice 3

Le noyau de l'atome d'hydrogène est représenté par . Le rayon de cet atome est r= 53 pm ; Il correspond à la distance moyenne noyau-électron.

  1. Décrire la constitution de l'atome d'hydrogène.
  2. Quelle est la masse du noyau? Quelle est la charge électrique du noyau ?
  3. Exprimer puis calculer l'intensité de la force d'interaction gravitationnelle Fg entre les particules élémentaires constitutives de cet atome. Est ce une interaction répulsive ou attractive ?
  4. Exprimer puis calculer l'intensité de la force d'interaction électrique Fe entre les particules élémentaires constitutives de cet atome. Est-ce une interaction répulsive ou attractive ?
  5. Calculer le rapport Fe/Fg. En déduire l'interaction responsable de la cohésion de l'atome.
  6. L'interaction forte intervient-elle dans la cohésion du noyau d'hydrogène ? Expliquer.
>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Clément

Freelancer et pilote, j'espère atteindre la sagesse en partageant le savoir que j'ai acquis lors de mes voyages au volant de ma berline. Curieux scientifique, ma soif de découverte n'a d'égale que la durée de demie-vie du bismuth 209.