Quelques rappels essentiels sur la lumière

Les ondes

Comment différentier les différents types d'onde ? La lumière est une onde électromagnétique tandis que le son correspond à une onde mécanique

Une onde est une déformation ou une vibration qui se propage dans un milieu défini.

Il existe trois types différents d’ondes :

  • Mécanique : Les ondes magnétiques nécessitent une matière qui se déforme afin de se propager. Ce matériau a la capacité recouvrer son état initial grâce aux forces de restauration qui inversent la déformation.
  • Électromagnétique : Les ondes électromagnétiques quant à elles n’ont pas besoin de support pour se déplacer : elles correspondent à des oscillation périodiques de champs électriques et magnétiques qui peuvent alors se déplacer dans le vide.
  • Gravitationnelle : Les ondes gravitationnelles n’ont plus de support pour se déplacer puisque ce sont les déformations de la géométrie de l’espace-temps qui se propagent.

La lumière

La lumière est une onde lumineuse constituée de particules : les photons.

Une particule est dite subatomique quand elle est de taille inférieure à celle de l'atome et notamment du noyau. On analyse ces éléments dans la physique des particules.

L'atmosphère, les nuages, le sol ou les océans reçoivent la lumière solaire. Ils renvoient une partie de cette
lumière dans toutes les directions : on dit qu'ils diffusent la lumière.

La lumière est un élément essentiel à la vie. En effet, elle est nécessaire à la photosynthèse, et elle permet aux êtres vivants de refaire des réserves en vitamine D, nécessaire à la vie.

La Lune, les planètes, les comètes et tous les corps du système solaire, sont éclairés par le Soleil. Ils sont visibles car leur surface diffuse une partie de la lumière solaire.

Les photographes utilisent des écrans diffusant pour obtenir un éclairage sans ombre sur le sujet. Les planètes, les nuages, les écrans diffusant sont des objets lumineux qui ne produisent pas de lumière. Ils diffusent la lumière qu'ils reçoivent : ce sont des sources secondaires de lumière.

Une onde se propage dans son milieu

Comment réagit la lumière quand elle change de milieu ? L'eau ne se comporte pas de la même manière dans l'eau que dans l'air.

En cour de physique chimie, une onde se propage dans un milieu qui le lui permet car la propagation résulte de la mise en mouvement d’une particule dans le temps mais aussi dans l’espace  par rapport au milieu. Cela est possible uniquement si la source est dans un état vibratoire.

On peut caractériser la propagation d’une onde par sa vitesse de propagation à l’aide la formule suivante :

    \[ c = \lambda \times f \]

Avec :

  • c la célérité de l’onde ;
  • λ la longueur d’onde ;
  • f la fréquence de l’onde.

Remarque : La vitesse de la lumière est de 300 000 km.s-1 et la célérité d’une onde sonore est de 344 m.s-1

La fréquence d'une onde ne dépend que de la fréquence de la source mais ne dépend pas de la fréquence de l'onde.

La célérité d'une onde v dépend du milieu de propagation.

  • Elle est toujours inférieure à celle de cette onde dans le vide c . v < c .
  • n est toujours inférieur à 1 . n < 1

Dans le vide, la célérité de la lumière est c = 299 792 458 m.s-1 (on retiendra c = 3.108 m.s-1).

La célérité de la lumière dans le vide ne dépend pas de la fréquence de l'onde.

La célérité de la lumière dans l'air est pratiquement égale à sa célérité dans le vide.

La réaction de l'onde lorsqu'elle rencontre un nouveau milieu

Comment observer le spectre de la lumière visible ? Un arc-en-ciel peut se créer lorsqu'un rayon de Soleil traverse une goutte de pluie avec un certain angle

Phénomène de diffraction

C'est un phénomène qui est propre aux ondes qui se manifestent lorsqu'une onde rencontre un obstacle ou une ouverture de faible dimension.

La modification de la forme d'onde on obtient des ondes circulaires. L'onde se propage derrière l'obstacle, il n'y a pas de zone d'ombre.

Le phénomène de diffraction se manifester lorsqu'une onde rencontre une ouverture, obstacle, dont les dimensions sont du même ordre de sa longueur d'onde. Ce phénomène est d'autant plus marqué que a est petit.

Propagation d'une onde face à un obstacle

On appelle fentes, ou interférences, de Young toute expérience consistant à faire interférer deux faisceaux de lumière qui sont issus d'une même source. Cette interférence est produite grâce au passage de la lumière dans deux petits trous qui auront été percé au sein d'un plan opaque. On observe alors pour résultat, sur un écran disposé face à ces fentes, un motif de diffraction représenté par une zone où des franges sombres et des franges illuminées sont disposées en alternance.

Cette expérience permet ainsi de mettre en lumière la nature ondulatoire des ondes électromagnétiques. Lorsque cette même expérience est réalisée avec de la matière, comme des atomes, des molécules ou des électrons, il est possible d'observer ce même comportement. On peut ainsi observer la dualité onde-particule puisque les interférences permettent de montrer que la matière présente également un comportement ondulatoire bien que les impact sur l'écran démontre un comportement particulaire

Dispersion des ondes

Un milieu est dispersif pour les ondes si la vitesse de propagation de l'onde dans le milieu dépend de sa fréquence de dispersion.

Remarque : L'air n'est pas un milieu dispersif pour les ondes sonores car les sons graves et aigus (leur fréquence) s'y propagent à la même vitesse.

Remarque : L'eau est un milieu dispersif pour les ondes à la surface de l'eau.

La réfraction

L'indice de réfraction

Un milieu transparent est caractérisé par son indice de réfraction. L'indice de réfraction d'un milieu transparent correspond au rapport entre la célérité d'une onde se propageant dans le vide et sa célérité dans le milieu considéré.

    \[ n = \frac { c } { v } \]

Avec

  • n correspondant à l'indice de réfraction du milieu transparent et qui est une grandeur sans unité ;
  • c correspondant à la célérité de l'onde dans le vide. La célérité est égale à 3.10m.s-1 ;
  • Et v correspondant à la célérité de l'onde dans le milieu transparent qui s'exprime en m.s-1.

Un milieu est dit dispersif si la célérité d'une onde lumineuse monochromatique qui se propage dans ce milieu dépend de sa fréquence (donc de sa longueur d'onde dans le vide). L'indice de réfraction d'un milieu dispersif dépend donc de la fréquence de l'onde qui s'y propage.

La loi de Snell-Descartes

Pourquoi faut-il apprendre par cœur les lois en physique chimie ? Cette loi est importante, elle peut être nécessaire dans différentes situations.

Définition : La réfraction de la lumière correspond au changement de direction du rayon lumineux lorsque celui-ci traverse une surface séparant deux milieux d'indices de réfraction différents.

En effet, la loi de Snell-Descartes de la réfraction exprime le changement de direction d'un faisceau lumineux lors de la traversée d'une paroi qui sépare deux milieux différents. Il faut d'abord savoir que chaque milieu est caractérisé par sa capacité à « ralentir » la lumière.

On modélise cette caractéristique par son indice de réfraction n qui s'exprime sous la forme :

    \[ n = \frac { c } { v } \]

v est la vitesse de la lumière dans ce milieu et c est la vitesse de la lumière dans le vide (souvent arrondie à 3.108 m.s-1

Il est important de savoir que :

  • Le rayon lumineux est dit incident avant d'avoir rencontré la surface réfractante (appelée dioptre), il est dit réfracté après avoir rencontré cette dernière.
  • Le point de rencontre du rayon incident et du dioptre est appelé point d'incidence.
  • Le plan contenant le rayon incident et la normale au dioptre, au point d'incidence est dit plan d'incidence.
  • L'angle orienté i1 pris entre la normale au point d'incidence et le rayon incident est dit angle d'incidence.
  • L'angle orienté i2 pris entre la normale au point d'incidence et le rayon réfracté est dit angle de réfraction.
  • Les angles i1 et i2 sont positifs si ils sont orientés dans le sens trigonométrique (sens inverse des aiguilles d'une montre), négatifs sinon.

On prend n1 l'indice de réfraction du milieu dans lequel se propage le rayon incident et n2 celui du milieu dans lequel se propage le rayon réfracté.

Pour pouvoir énoncer la loi de la réfraction, il faut que le rayon réfracté, le rayon incident et la normale (au dioptre) soient dans un même plan qui est appelé le plan d'incidence et que le rayon incident et le rayon réfracté soient situés de part et d'autre de la normale.

Lorsque n> n2 (et respectivement n< n2) le rayon réfracté (et respectivement : incident) se rapproche plus rapidement du dioptre que le rayon incident (ou réfracté). Cependant, il existe un cas particulier où le rayon réfracté (ou incident) se retrouve mathématiquement sur le dioptre (sa limite) : il y a alors réflexion totale.

Les molécules peuvent influencer la propagation des ondes

Le pouvoir rotatoire

On appelle pouvoir rotatoire tout angle de déviation du plan de polarisation d'une lumière qui est polarisée rectilignement pour tout observateur qui va se situer en face du faisceau dit incident.

Ce pouvoir rotatoire est alors lié à l'activité optique ou encore biréfringence circulaire correspondant alors à la propriété que peuvent présenter certains milieux que l'on considère comme étant optiquement actifs. Cette propriété consiste alors à la capacité de faire tourner le vecteur d'un faisceau lumineux qui va traverser le dit milieu optiquement actif.

Restons néanmoins prudent sur ce terme car, par abus de langage, le terme de pouvoir rotatoire est parfois utilisé de façon incorrecte afin de désigner l'activité optique.

Selon la direction dans laquelle les composés peuvent dévier le vecteur, ils portent un nom différent :

  • On appelle composés dextrogyres, comme le saccharose, tout composé induisant une déviation du vecteur vers la droite lorsque l'observateur se situe face au faisceau ;
  • Et on appelle composés lévrogyres, comme le fructose, tout composé induisant une déviation du vecteur vers la gauche lorsque l'observateur se situe face au faisceau ;

Ce phénomène de rotation de la polarisation d'une lumière polarisée rectilignement a été observé pour la première fois au début du XIXe siècle par Jean-Baptiste Biot, d'où la loi de Biot, avant même que la nature des molécules ne soit comprise.

On a alors utilisé des polarimètres afin de mesurer la concentration de différents sucres, tels que le glucose, en solution. On a alors par moment associé le nom de ces sucres à leur effet. C'est notamment le cas du dextrose qui provoque une déviation de la polarisation vers la droite.

La loi de Biot

La loi de biot permet d'exprimer la proportionnalité du pouvoir rotatoire d'un milieu aux concentrations en produits optiquement actifs (dextrogyres ou lévogyres). Autrement dit, la loi de Biot permet, pour une solution et de par son pouvoir rotatoire, de mesurer sa concentration.

Elle s'exprime ainsi :

    \[ \alpha = \left[ \alpha \right] \times l \times c \]

Avec :

  • α correspondant au pouvoir rotatoire de la solution en degré (°) ;
  • [ α ] correspondant au pouvoir rotatoire spécifique. A noter que cette valeur dépend de la température, de la longueur d'onde utilisée mais aussi du solvant. On utilise souvent dans les tables une valeur pour une température de 20°C ainsi que pour une longueur d'onde de la raie jaune du sodium à 589,3 nm.
  • l correspondant à la longueur de la cuve en décimètre (dm) ;
  • et c correspondant à la concentration de la solution en gramme par millilitre (g.mL-1)

Ainsi, lorsque les molécules sont en présence d'un champ optique, elles présentent toutes une activité optique. Il est alors possible d'observer une rotation de la polarisation d'un faisceau lumineux lorsque celui-ci va traverser un milieu qui est lui-même soumis à un champ magnétique. On appelle alors ce phénomène l'effet Faraday. Il constitue alors l'une des première constatation du lien existant entre la lumière et l'électromagnétisme.

Complément intéressant : la propagation du son

Lorsque l'onde se propage dans un milieu fluide compressible, il est possible d'observer une variation de pression qui va alors se propager sous la forme d'une onde. L'air nous entourant étant un milieu fluide compressible, il est alors possible de ressentir ces ondes sous la forme de son que l'on perçoit grâce aux tympans.

Cependant, pour qu'elle soit perceptible, il faut que la variation de pression, parce que son amplitude est faible par rapport à la pression atmosphérique, soit suffisamment rapide et répétée. Il est possible de considérer tout objet vibrant, tel qu'un instrument de musique ou encore un haut-parleur, comme étant une source sonore qui est donc, comme son nom l'indique, la source des vibration de l'air.

La perturbation va alors se propager, même si les particules oscillent très peu (soit quelques micromètres autour d'une position stable), d'une façon analogue aux perturbations de l'eau lorsqu'une pierre y tombe : on peut observer des vagues qui s'éloignent peu à peu du point de perturbation bien que l'eau reste au même endroit. En effet, l'eau ne se déplace que verticalement et ne suit pas les vagues (il est possible d'observer ce phénomène en plaçant un objet flottant près de la perturbation : il ne restera à la même position).

On peut alors dire que, dans les fluides, l'onde sonore correspond à une onde longitudinale. Ainsi, les particules observées vibrent de façon parallèle à la direction de déplacement de l'onde. Une onde sonore peut également être transmise par un solide vibrant. En effet, la vibration va se propager au sein du solide comme dans les fluides : il y aura de faibles oscillation autour de la position d'équilibre des atomes constituant le solide.

La conséquence est alors une contrainte du matériau qui, équivalente à la pression dans un fluide, est très difficile à mesurer. C'est donc la rigidité du matériau qui permettra la transmission des ondes de contraintes transversales. Il peut être intéressant de noter que, la vitesse de propagation du son, également appelée célérité, varie selon différentes propriétés du milieu comme :

  • La nature du milieu ;
  • La température du milieu ;
  • Et la pression du milieu.

Ainsi, dans un gaz parfait, on peut obtenir la vitesse de propagation d'une onde sonore avec la relation suivante :

    \[ c = \frac  { 1 } { \sqrt { \rho \chi _{S} } } \]

Avec :

  • ρ correspondant à la masse volumique du gaz ;
  • Et χS correspondant à la compressibilité isentropique du gaz.

Il est également possible d'observer une diminution de la vitesse du son lorsque :

  • La densité du gaz augmente, on appelle cela l'effet d'inertie ;
  • La compressibilité du gaz, c'est à dire sa capacité à changer de volume selon la pression qu'il subit, augmente.

Pour calculer la vitesse du son dont l'unité est, rappelons-le, le mètre par seconde, il est possible d'utiliser l'expression suivante :

    \[ c _ { \text { air } } = 330 + 0,6 \times T \]

avec T la température en degré Celsius. Mais il est possible d'être plus précis en utilisant les degrés Kelvin. On doit alors se servir de l'expression suivante :

    \[ c _ { \text { air } } = 20 \times \sqrt { T } \]

Notons que, de façon générale, la vitesse du son dans l'eau est de 1 500 m.s-1. Mais il existe de nombreux milieux où les ondes sonores peuvent se propager de façon encore plus rapide. On peut alors prendre l'exemple de l'acier au sein duquel les ondes se propage une vitesse comprise entre 5 600 et 5 900 m.s-1. Cependant, une onde sonore est incapable de se propager dans le vide puisqu'il faut nécessairement la présence de matière déformable pour que la vibration puisse se propager.

Exercice n°1

Donner une définition de :

  • lentille convergente :
  • foyer d'une lentille :
  • distance focale :

Exercice n°2

Compléter les phrases suivantes :

  • pour une lentille divergente, les bords sont plus ___ que le centre.
  • lorsqu'un rayon lumineux passe par le ___ d'une lentille, il n'est pas dévié.

Exercice n°3

Représenter le symbole d'une lentille convergente et d'une lentille divergente (penser à noter la légende).

Exercice n°4

  1. Comment peut-on déterminer simplement la position du fier de cette lentille ? Expliquer la réponse.
  2. Détermine la valeur de sa distance focale le plus précisément possible.

Exercice n°5

Dans les schéma suivant, on a masqué les lentilles utilisées ; observe bien ces schémas et retrouve quelle lentille se cache sous le rectangle : une lentille convergent ou une lentille divergent ? Explique tes réponses.

Besoin d'un professeur de Physique - Chimie ?

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 4,15/5 - 13 vote(s)
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !