La radioactivité

Qu'est-ce-qu'un atome radioactif ? En France, l’énergie nucléaire représente la majorité de l’énergie produite.
Le nucléaire semble alors être quelque chose de banal mais peu de gens savent comment celle-ci fonctionne. Pour y remédier, vous trouverez tout au long de cet article des informations pour mieux comprendre ce phénomène physique.

La radioactivité correspond à un phénomène physique au cours duquel des noyaux atomiques considérés comme instables, on les appelle alors radionucléides ou encore radioisotopes, se transforment, et ce de façon spontanée, en d’autres atomes tout en émettant par la même occasion des particules de matières comme des électrons, des noyaux d’hélium ou encore des neutrons et en émettant de l’énergie sous la forme de photons et d’énergie cinétique. On appelle cela une désintégration.

On appelle alors l’émission de particules, qu’elles soient matérielle ou immatérielles, rayonnement et on est capable de parler de rayonnements ionisants car l’énergie des particules est telle qu’elle est capable d’entraîner la ionisation de la matière traversée. Il existe alors différents types de rayonnement que l’on listera un peu plus tard.

La radioactivité présente des effets sur les organismes subissant des rayonnements ionisants, on parle alors d’irradiation. Cependant, ces effets dépendent du niveau, mais aussi de la durée de l’exposition, qui peut être aiguë ou encore chronique, de la nature du rayonnement mais également de la localisation de la radioactivité. En effet, les effets ne seront pas les mêmes si l’exposition est interne que si l’exposition était externe ou encore en surface.

Les rayonnements provoqués par les substances radioactives sont très largement utilisés dans les différentes industrie, notamment en ce qui concerne le contrôle de pièce manufacturées, les soudures, l’usure ou même à faible dose en médecine afin de déterminer un diagnostic ou dans une visée thérapeutique afin de soigner les cancers. Dans tous les cas, il est évident qu’il est nécessaire de suivre des mesures de prévention, de protection mais également de contrôle qui resteront adaptés au niveau de radioactivité observé.

Défaut de masse d’un noyau et énergie de liaison d’un noyau

L’atome a une structure particulière, les scientifiques sont passés par différents stades avant d’arriver à décrire celle-ci. Le noyau d’un atome est constitué de protons et de neutrons, il est donc électriquement positif. Ce noyau est entouré d’électrons qui gravitent autour de celui-ci, la partie la plus extérieure de l’atome est donc électriquement positif. Dans le cas d’un atome, ces deux parties électriques se compensent et donnent un atome électriquement neutre, ce n’est pas forcément le cas pour les ions. Ces deux parties sont séparées par du vide. En effet, on dit souvent de l’atome qu’il a une structure lacunaire. De plus, la taille du noyau est très petite comparé à celle de l’atome entier.

Défaut de masse d’un noyau

Est-ce-que n'importe quel atome peut devenir radioactif ? En physique nucléaire, le défaut de masse, noté B, correspond à la différence entre la somme des masses de tous les nucléons d’un noyau.

La masse d’un noyau est inférieure à la somme des masses des particules qui le composent. Le défaut de masse est cette différence. Elle est positive.

Défaut de masse :

    \[ \Delta m = Z \times m _ { p } + \left( A - Z \right) \times m _ { n } - m _ { \text { noyau } } \]

Energie de liaison

Relation d’Einstein

Le principe d’équivalence (1905), énergie-masse sont deux grandeurs proportionnelles et que de la masse peut se convertir en énergie et inversement. Toutes particules possèdent du fait de sa masse une énergie potentielle
de repos.

    \[ E = m \times c ^ { 2 } \]

Est-ce-que Einstein a eu un prix Nobel ? Albert Einstein est un célèbre physicien théoricien né le 14 mars 1879 à Ulm, dans le Wurtemberg, et mort le 18 avril 1955 à Princeton, dans le New Jersey. Il sera célèbre grâce à sa théorie de la relativité restreinte en 1905, sa théorie de la gravitation dite de relativité générale en 1915 mais surtout grâce à ses contribution au développement de la mécanique quantique et de la cosmologie.

Energie de liaison

Elle est définie comme étant l’énergie qu’il faut fournir au noyau pour le dissocier en nucléons isolés et immobiles.

    \[ E _ { \text { noyau } } + E _ { l } = E _ { \text { proton } } + E _ { \text { neutron } } \]

    \[ E _ { l } = E \times m _ { p } \times c ^ { 2 } + \left( A - Z \right) \times m _ { n } \times c ^ { 2 } - m _ { \text { noyau } } \times c ^ { 2 } \]

    \[ E _ { l } = c ^{ 2 } \times  \left( \left( Z \times m _ { p } + \left( A - Z \right) \times m _ { n } \right) - m _ { \text { noyau } } \right) \]

    \[ E _ { l } = \Delta m \times c ^ { 2 } \]

Energie de liaison par nucléon

Un nucléon correspond à un terme générique faisant référence aux différents composants d’un noyau atomique. En effet, par nucléon on sous-entend le terme proton et neutron qui sont tous deux ce qu’on appelle des baryons. De plus, il peut être intéressant de se souvenir que le nombre de nucléons d’un atome est, de façon générale, noté A et appelé nombre de masse.

C’est l’énergie qu’il faut fournir au noyau pour le dissocier.
Ces énergies de liaisons peuvent être calculées pour chaque noyau et on peut calculer pour chaque noyau son énergie de liaison par nucléon.

 

Entre 20 et 195 on trouve les noyaux les plus stables dont le Fer.

Attention aux unités

Les unités permettent la logique scientifique

La dimension d’une grandeur traduit la nature physique de cette grandeur. Si deux grandeurs présentent la même dimension, alors elles sont dites homogènes. Bien évidemment, seule la comparaison de deux valeurs de grandeurs physiques homogènes a un sens !

Par exemple, il est insensé de comparer une énergie à une masse puisque ce sont des grandeurs de natures différentes.

Les unités permettent donc de quantifier la mesure d’une grandeur physique.

Grandeurs du système international et usuelles

L’ensemble des unités associées aux dimensions fondamentales constitue le système international d’unités. Il s’agit du système MksA (mètre, kilogramme, seconde, Ampère), mais le Kelvin, le mole et le candela font aussi partie de ce système. Ces unités sont appelées unités légales. Elles sont universelles et connues de par le monde entier.

Il est important de savoir que toutes les autres dimensions se déduisent de ces sept dimensions fondamentales par produit ou division de ces dimensions.

Dans certains sujets d’exercices, les grandeurs ne sont pas exprimées dans le système international mais avec des grandeurs usuelles. Il est facile de les comprendre et elles sont parfois utilisées dans la vie de tous les jours, mais il est essentiel de toujours effectuer les calculs avec les grandeurs exprimées dans l’unité internationale pour éviter les erreurs.

Par exemple, la pression est souvent exprimée en Bar. Or, dans le système international, la pression s’exprime en Pascal !

Unités d’énergie

Unité légale : Le Joule(J)

L’électronvolt : eV : 1eV = 1,6 . 10-19 J

Unité de masse

La masse des particules étant faible on a utilisé une nouvelle unité, c’est l’unité de masse atomique. Elle est défini comme étant : 1/12 de la masse d’un atome de carbone 12.

1 u = 1,66054 . 10-27 kg

Retrouver une unité grâce à l’analyse dimensionnelle

Si, lors d’un exercice, vous vous retrouvez face à une formule dont vous ignorez l’unité du résultat, ne paniquez pas !
Il est très simple de retrouver l’unité avec ce qu’on appelle une analyse dimensionnelle.

Une analyse dimensionnelle consiste à décomposer les grandeurs physiques mises en jeu dans une formule afin de retrouver l’unité de la grandeur cherchée.

Voici un exemple simple :

    \[ v = \frac { \triangle d } { \triangle t } \]

En décomposant les grandeurs physique en leur unité, on obtient :

    \[ v = \frac { m } { s } \]

On peut donc en déduire que l’unité de la vitesse est le m/s, soit m.s−1

Homogénéité et relations mathématiques

Il faut savoir, avant de procéder à une analyse dimensionnelle que :

  • Deux grandeurs de valeurs égales ont nécessairement la même dimension,
  • Les termes d’une somme ont nécessairement la même dimension,
  • La dimension d’un produit de facteur est le produit des dimensions des facteurs.

Il faut aussi procéder systématiquement à une analyse dimensionnelle des grandeurs définies par les formules car cela permet :

  • De comprendre la signification physique des termes apparaissant dans les expressions et équations littérales,
  • De détecter une erreur de calcul,
  • De déterminer l’expression approchée d’une grandeur sans résoudre exactement le problème.

Surtout, n’hésitez pas à vous prêter régulièrement à ce type d’exercice pour qu’il se fasse de la façon la plus naturelle, fluide et rapide qu’il soit lors des examens. Pratiquez chez vous et montrer le résultat à votre enseignant pour qu’il puisse vérifier ce que vous faîtes !

Fission et fusion

Fission

La fission spontanée est un phénomène de désintégration radioactive selon lequel un noyau lourd d’un atome se divise pour former au moins deux noyaux plus petits

Plus précisément, la fission est une réaction nucléaire au cours de laquelle un noyau père lourd se scinde en noyau plus léger sous l’impact d’un neutron. Les noyaux qui peuvent subir la réaction de fission sont des noyaux dits fissiles.

La réaction de fission libère deux ou trois autres neutrons qui vont pouvoir encore à leur tour casser d’autres noyaux, c’est ce qu’on appelle une réaction en chaîne. Elles ne sont pas contrôlées dans les bombes atomiques : Bombe A.

Une bombe A, connue également sous le nom de bombe atomique, bombe nucléaire ou encore bombe à fission est une bombe nucléaire qui tire son énergie de la fission d’éléments radioactifs comme le plutonium ou l’uranium. Ce fut les premières bombes atomiques ayant servi d’armes nucléaires lors de la Seconde Guerre mondiale, mais aussi les seules bombes ayant été utilisés lors de conflits. Little Boy et Fat Man, les bombes nucléaires de l’armée américaine ayant touché respectivement Hiroshima et Nagasaki en sont deux exemples

Une bombe H, connue sous les noms de bombe à hydrogène, bombe à fusion ou encore bombe thermonucléaire est une bombe nucléaire qui tire son énergie de la fusion de noyaux légers comme ceux de l’hélium ou du deutérium par exemple

Fusion

Réaction nucléaire au cours de laquelle des noyaux légers s’unissent pour former un noyau plus lourd. Le type de réaction qui a lieu sur les étoiles en général est une réaction qui n’est pas contrôlée. Pour amorcer cette réaction, il faut des températures très élevées (thermonucléaires).

Energie libérée lors des réactions nucléaires

Comment réussir son oral de physique chimie ? Lorsque vous travaillez avec des formules, attentions aux erreurs de conversion et d’unité qui peuvent rendre votre travail incohérent. C’est pour cela qu’il faut toujours garder un regard critique sur son travail et connaître les principaux ordres de grandeur.

Lorsqu’elles se produisent, il y a variation de la masse du système. Cette variation est une perte de masse.

Variation de masse du système :

    \[ \Delta m = m _ { f } - m _ { i } \leq 0 \]

La variation d’énergie est donnée par la relation :

    \[ \Delta E = \Delta m \times c ^ { 2 } \leq 0 \]

Une autre méthode permet de calculer l’énergie récupérée basée sur les énergies de liaison libérées au cours de la réaction de fusion et de fission.

    \[ \Delta E = \sum E _ { l \text { reactif } } - E _ { l \text { produit } } \]

Il peut être également intéressant de savoir que les particules produites lors d’une désintégration atomique peut différer selon le type de radioactivité :

  • Radioactivité bêta : La radioactivité bêta est un type de désintégration radioactive où une particule bêta (électron ou positron) est émise. On parle de radioactivité bêta + quand un positron est émis mais on parle de radioactivité – quand c’est un électron qui est émis
  • Radioactivité alpha : La radioactivité alpha est un rayonnement provoqué par une désintégration alpha qui est une désintégration radioactive où un noyau atomique éjecte une particule alpha qui se transforme en un autre noyau dont le nombre de masse est diminué de 4 et le numéro atomique de 2 à cause de la particule alpha manquante qui est analogue au noyau d’hélium 4
  • Radioactivité gamma : La radioactivité gamma est un rayonnement provoqué par une désintégration gamma. Le plu souvent, ces désintégrations accompagnent des désintégrations alpha ou bêta. En effet, quand il émet un rayon alpha ou bêta, le noyau devient excité. Lors de l’émission d’un rayonnement électromagnétique gamma, le noyau peut donc redescendre à un état plus stable

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (Aucune note pour le moment)
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide