Chapitres
Problématique
Le but de l'électromagnétisme est de décrire les interactions entre distributions de charges.
Il n'existe pas d’interaction à distance, le champ électromagnétique (E, B) est l'intermédiaire de l’interaction.
Questions
- Comment déterminer le champ E créé par une distribution de charges, dans le cas stationnaire ?
- Comment représenter ce champ ?
Rappels
Champ électrique
En physique, on appelle champ électrique tout champ vectoriel créé par des particules électriquement chargées. Plus exactement, lorsque nous sommes en présence d'une particule chargée, les propriétés locale de l'espace défini sont alors modifié ce qui permet de définir la notion de champ. En effet, si une autre charge se trouve être dans le dit champ, elle subira ce qu'on appelle l'action de la force électrique qui est exercée par la particule malgré la distance. On dit alors du champ électrique qu'il est le médiateur de la dite action à distance.
Si on se veut plus précis, on peut définir dans un référentiel galiléen défini, une charge q définie de vecteur vitesse v qui subit de la part des autres charges présentes, qu'elles soient fixes ou mobiles, une force qu'on définira de force de Lorentz. Cette force se décompose ainsi :
avec :
-
le champ électrique. Celui-ci décrit dans ce cas la partie de la force de Lorentz qui est indépendante de la vitesse de la charge
-
le champ magnétique. Celui-ci décrit ainsi la partie de la force exercée sur la charge qui dépend du déplacement de cette même charge dans le référentiel choisi.
De plus, il est important de noter que les deux champs, électrique et magnétique, dépendent du référentiel d'étude.
Avec cette formule, on peut alors définir le champ électrique comme étant le champ traduisant l'action à distance subie par une charge électrique fixe dans un référentiel défini de la part de toutes les autres charges, qu'elles soient mobiles ou fixes.
Mais on peut également définir le champ électrique comme étant toute région de l'espace dans laquelle une charge est soumise à une force dite de Coulomb.
On commence à parler de champ électrostatique lorsque, dans un référentiel d'étude, les charges sont fixes. Notons d'ailleurs que le champ électrostatique ne correspond pas au champ électrique comme décrit plus haut dans cet article puisqu'en effet, lorsque les charges sont en mouvement dans un référentiel, il faut ajouter à ce référentiel un champ électrique qui est induit par les déplacement des charges afin d'obtenir un champ électrique complet.
Mais, le champ électrique reste dans la réalité un caractère relatif puisqu'il ne peut exister indépendamment du champ magnétique. En effet, si on observe la description correcte d'un champ électromagnétique, celui-ci fait intervenir un tenseur quadridimensionnel de champ électromagnétique dont les composantes temporelles correspondent alors à celle d'un champ électrique. Seul ce tenseur possède un sens physique. Alors, dans le cas d'un changement de référentiel, il est tout à fait possible de transformer un champ magnétique en champ électrique et inversement.
Les différents types de champ
Le champ électrostatique
On parle de champ électrostatique lors que les charges qui constitue le champ sont au repos dans le référentiel d'étude. Ce champ est donc déduit de l'expression de la loi de Coulomb, aussi appelée interaction électrostatique.
Le champ gravitationnel
En physique classique, on appelle champ gravitationnel, ou encore champ de gravitation, un champ qui est réparti dans l'espace et dû à la présence d'une masse qui est alors susceptible d'exercer une influence gravitationnelle sur tout les autres corps pouvant être présent à proximité immédiate ou non.
On peut démontrer que le champ gravitationnel créé en un point quelconque par un corps ponctuel dérive d'un potentiel scalaire dit newtonien.
En physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l'espace et dû à la présence d'une masse susceptible d'exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L'introduction de cette grandeur permet de s'affranchir du problème de la médiation de l'action à distance apparaissant dans l'expression de la force de gravitation universelle.
On peut interpréter le champ gravitationnel comme étant la modification de la métrique de l'espace-temps. L'approximation newtonienne est alors valable uniquement dans le cas où les corps présentent une vitesse faible par rapport à celle de la lumière dans le vide et si le potentiel gravitationnel qu'ils créent est tel que le quotient du potentiel gravitationnel sur le carré de la vitesse de la lumière dans le vide est négligeable.
On peut approcher le champ électrique et le champ gravitationnel. En effet, l'expression du champ et du potentiel ne sont différents que d'une constante. De plus, les principaux théorèmes de calculs, celui de la superposition ou de Gauss par exemple, peuvent s'appliquer dans les deux cas. Ce qui les différencie alors est le caractère attractif, donc entre deux charges de signe opposé, ou répulsif, donc entre deux charges de même signe, du champ électrique tandis que le champ gravitationnel ne peut être qu'attractif.
Analyse
- Le champ électromagnétique créé par une distribution de charges (et courants) est donnée par les équations de Maxwell : E et B vérifient 4 équations couplées.
- En régime stationnaires, E et B sont découplés, on peut donc déterminer le champ électrique indépendamment du champ magnétique.
- En régime stationnaire, le champ E est qualifié de "champ électrostatique". Son calcul se fera à partir des équations de Maxwell, les anciens calculs par intégrales multiples ne sont plus au programme.
- La visualisation dans l'espace du champ électrostatique se fait par les lignes de champ ou les équipotentielles
Réalisation
Il existe plusieurs méthodes de calcul du champ électrostatique, les voici.
Méthode 1 : théorème de superposition
Il est possible d'appliquer le principe de superposition à un système de type entrée-sortie si :
- La somme de deux entrées quelconque correspond à la somme des deux sorties correspondantes ;
- Un multiple d'une entrée quelconque correspond le même multiple de la sortie correspondante.
Dans ce cas, c'est-à-dire celui d'un système physique, on peut appeler l'entrée excitation et la sortie réponse.
On obtient alors, en notant les excitations ƒ et les réponses x (donc les mouvements généré par les forces mécaniques ƒ) :
- Lorsque l'on sollicite le système par une entrée, donc une excitation notée ƒ1, une réponse, donc un déplacement, qui sera noté x1 ;
- Lorsque l'on sollicite le système par une entrée, donc une excitation notée ƒ2, une réponse, donc un déplacement, qui sera noté x2 .
Méthode 2 : théorème de Gauss
Le théorème de Gauss permet, en électromagnétisme, de calculer le flux d'un champ électrique à travers une surface qui est fermée et ce grâce à la connaissance des charges électriques que cette surface renferme.
Il s'énonce ainsi :
Le flux du champ électrique à travers une surface S fermée est égal à la somme des charges électriques contenues dans le volume V délimité par cette surface, divisée par la permittivité du vide.
Méthode 3 : intégration de l'équation de Maxwell-Gauss
Les équations de Maxwell-Gauss, aussi connues sous le noms d'équations de Maxwell-Lorenz sont des équations fondamentales de la physique. En effet, ces sont elles qui régissent l'électromagnétisme. Elles tiennent leur nom du physicien James Clerk Maxwell d'origine écossaise. Toute sa vie il a travaillé sur les champs électriques et magnétiques et il a également contribué à l'élaboration de nombreuses lois physiques dans son domaine. Il est considéré comme l'un des scientifiques les plus influents du IXXème siècle.
Elle réunit sous la forme d'équations intégrales des lois déjà connues telles que celles de théorèmes de Gauss, Ampère et Faraday.
Les équation de Maxwell sont essentielles puisqu'elles démontrent qu'en régime stationnaire, les champs électrique et magnétiques sont indépendants l'un de l'autre, ce qui n'est pas nécessairement le cas lorsque l'on se trouve en régime variable. En effet, dans le cas le plus général, il faut alors parler du champ électromagnétique puisque la séparation entre l'électrique et le magnétique n'est qu'un aspect visualisé par l'Homme.
Méthode 4 : passage par le potentiel, résolution de l'équation de Poisson
L'équation de Poisson est une équation aux dérivées partielles de cette forme :
Appliqué à l'électrostatique, elle donne le potentiel électrique appelé V en présence d'une d'une distribution de charges p :
Cette équation est nommé ainsi en hommage au physicien et mathématicien Siméon Denis Poisson. D'origine française, il est célèbre pour ces nombreux travaux dans plusieurs matières scientifiques. Il a marqué l'histoire de la physique avec ses recherches sur l'électricité et les potentiels. Il a aussi participé aux travaux mathématiques concernant les intégrales et notamment les intégrales de Fourier.
Propriétés topographiques du champ électrostatique
Lignes de champ
Les lignes de champ sont une représentation selon laquelle on prend un point d'un champ électrostatique et on trace tous les vecteurs au départ de ce point. Les lignes de champ sont orthogonales aux équipotentielles du même champ.
Équipotentielles
Une équipotentielle est une surface d'un champ électrostatique ou électromagnétique dans laquelle tous les scalaires ont la même valeur.