I/ Solide pseudo-isolé:

Un solide est pseudo isolé s'il est soumis à des actions extérieures qui se compensent.
Exemple: Mobile sur coussin d'air.
Remarque: Un solide est isolé s'il n'est soumis à aucune action extérieure.

II/ Principe d'inertie (première loi de Newton)

A) Exemple

On lance un mobile à coussin d'air sur une table horizontale. Son mouvement est rectiligne (trajectoire droite) et uniforme (vitesse constante).

Le vecteur vitesse du centre d'inertie du mobile est constant: =.

Bilan des forces agissant sur le mobile: Le mobile est soumis à:

  • Son poids .
  • La réaction de la table.

On peut admettre que ces deux forces ont même valeur (R=P). En effet,

  • Si on avait P>R, le mobile s'enfoncerait dans la table.
  • Si on avait P<R, le mobile s'élèverait au dessus de la table.

On en déduit = - <=> + = .

B) Énonce du principe de l'inertie

  • Dans un référentiel galiléen, le centre d'inertie G d'un solide isolé ou pseudo isolé possède un mouvement rectiligne uniforme (le vecteur vitesse du centre d'inertie est constant).
  • Réciproquement, dans un référentiel galiléen, si le centre d'inertie d'un solide possède un mouvement rectiligne uniforme, alors la somme des forces qui s'exercent sur ce solide est nulle.

Remarque: Un référentiel dans lequel le principe d'inertie est vérifié est dit galiléen.
Le référentiel terrestre (pour une courte durée), le référentiel géocentrique et le référentiel héliocentrique sont considérés comme galiléens.

C) Condition d'équilibre du centre d'inertie d'un système

L'immobilité est un cas particulier du mouvement rectiligne uniforme. Un système en équilibre est un système pour lequel, dans le référentiel considéré, on peut écrire = . Le cas du système en équilibre est donc un cas particulier du principe d'inertie.

D) Exemple: détermination de la réaction d'un plan incliné

On pourra se reporter au paragraphe V (compléments) pour obtenir plus de détails sur la méthode utilisée pour projeter un vecteur dans un repère orthonormé.

Problème: Un solide de masse m peut glisser sans frottements sur un plan incliné d'angle a. Il est soutenu par un fil. Déterminer la réaction du plan incliné ainsi que la tension du fil.

On étudie le système {solide} dans le référentiel terrestre (galiléen par approximation).
Le système est soumis à 3 forces extérieures:

  • Son poids :
    • Force répartie à distance.
    • Direction: verticale.
    • Sens: vers le bas.
    • Point d'application: centre d'inertie du système.
  • La réaction normale du plan incliné :
    • Force répartie de contact.
    • Direction: verticale.
    • Sens: vers le haut .
    • Point d'application: centre de la surface de contact.
  • La tension du fil :
    • Force localisée de contact.
    • Direction: parallèle au plan incliné.
    • Sens: vers le haut.
    • Point d'application: point d'attache du fil.

Première loi de Newton: Le système est en équilibre, donc + + = .
Dans le repère associé au référentiel (voir schéma):

sur ox:   -T + P.sin(a) = 0.

sur oy:   RN - P.cos(a) = 0.

   <=> T = m.g.sin(a)

RN = m.g.cos(a)

III/ Deuxième loi de Newton

A) Exemple

Un mobile à coussin d'air est relié par un fil à un axe fixe. On le lance: il effectue un mouvement circulaire uniforme (enregistrement ci-contre).

Bilan des forces agissant sur le mobile: Le mobile est soumis à:

  • Son poids .
  • La réaction de la table.
  • La tension du fil.

On peut admettre que P et R ont même valeur. En effet,

  • Si on avait P>R, le mobile s'enfoncerait dans la table.
  • Si on avait P<R, le mobile s'élèverait au dessus de la table.

On en déduit =- et la somme des forces appliquées au solide s'écrit

= + +

  =>

=

Le vecteur est donc dirigé vers le point O (point d'attache du fil).

Soit D le vecteur représentant la variation du vecteur vitesse du centre d'inertie du mobile entre deux points proches. Ce vecteur est lui aussi dirigé vers le point O (voir construction ci-contre).

B) Approche de la deuxième loi de Newton

Dans un référentiel galiléen, si le vecteur vitesse G du centre d'inertie d'un solide varie, la somme () des forces qui agissent sur ce solide n'est pas nulle. La direction et le sens de cette somme sont ceux de la variation de G entre deux instants proches.

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (3,00/ 5 pour 2 votes)
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide