L'atome

L'histoire

Comment avons-nous pris conscience de l'existence des atomes ? Déjà à l'Antiquité, certains physiciens avaient pris conscience qu'il était possible de diviser la matière, et ce en des morceaux plus petits que ce qui est visible à l’œil humain.

En 400 av JC, un philosophe grecque nommée Démocrite est le premier homme à penser que la matière est constitué de minuscules particules tellement petite que l'on ne peut les diviser d'où leur nom de atomos qui signifie indivisible en grec.

La première approche des électrons date de l'époque de la Grèce Antique. Ceux-ci avaient pris conscience qu'une certaine oléorésine, l'ambre était capable d'attirée des objets si elle était frottée avec de la fourrure. Sans le savoir, ils venait de découvrir l'électricité statique. Il s'agit du deuxième phénomène électrique dont l'Homme a pris conscience, juste après la foudre.

En 1269, un ingénieur militaire qui servait auprès du prince Charles Premier de Sicile, se mit à étudier le phénomène d'attirance ente des petits objets après qu'ils aient été frottés.

La découvert de l'atome est imputable à Ernest Rutherford. Durant le début des années 1910, il s'est attelé à comprendre la composition de l'atome. Il a alors déterminé que l'atome était constitué d'un noyau qui concentrait toute la charge positive et aussi presque toute la masse de l'atome. Ce noyau est entouré d'un nuage électronique composé d'électrons.
L'un de ses collègues de laboratoire, Niels Bohr, a quant à lui démontré que les états de l'électrons dépendaient de l'énergie déterminée par le nombre n de l'atome. C'est à lui qu'on doit la compréhension de l'émission d'un photon lors d'un passage à un état inférieur.

Ernest Rutherford

Ernest Rutherford est un physicien et chimiste néo-zélandais ayant vécu de 1871 à 1937. On le considère comme l’un des précurseurs de la physique nucléaire. On lui doit notamment la découverte :

  • Des rayons alpha ;
  • Des rayons bêta ;
  • Du noyau atomique et de ses charges électroniques ;
  • De la désintégration nucléaire.

Toutes ses recherches le conduisirent à diriger le prestigieux laboratoire Cavendish de l’université de Cambridge au Royaume-Uni mais aussi de recevoir le prix Nobel de chimie en 1908.

Niels Bohr

Niels Henrik David Bohr est né le 7 Octobre 1885 à Copenhague et est mort le 18  novembre 1962 dans la même ville. Ce physicien danois est surtout connu pour sa contribution à l’établissement de la physique quantique.

Il a d’ailleurs reçu pour cela de nombreux honneurs : il a même été lauréat du prix Nobel de physique en 1922 pour son développement des mécanique quantique. Mais avant cela, il a été en 1921, lauréat de la médaille Hughes.

En 1926, il devient membre étranger de la Royal Society.

La Royal Society of London for the Improvement of Natural Knowledge, abrégée en Royal Society, est l’institution des sciences en Angleterre. Fondée en 1660 à Londres, elle est au Royaume-Uni l’équivalent de l’Académie des sciences en France.

Par la suite, il devient lauréat de la médaille Franklin, toujours en 1926. Il devient par la suite lauréat du Daraday Lectureship de la Société Royale de chimie en 1930 puis lauréat de la médaille de Copley en 1938.

N’étant ni membre d’une famille royale, ni chef d’Etat, il deviendra en 1947 le troisième et dernier Danois à être admis au sein de l’Ordre de L’Élephant au cours du xxe siècle.

L’ordre de l’Éléphant est un ordre de chevalerie danois. La décoration représente un éléphant portant une tour. C’est un insigne en émail blanc qui est suspendu à un collier d’or ou à un ruban bleu passé de l’épaule gauche au côté droit.

Il deviendra par la suite président de l’Académie royale danoise des sciences et des lettres de 1939 à 1962.

En son honneur, l’Union astronomique internationale nommera une vallée lunaire « la Vallis Bohr ».

Qui était Niels Bohr ? Niels Bohr et Albert Einstein étaient très proches et ils ont souvent travaillé ensemble. On peut dire qu'ils ont considérablement avancé la science et particulièrement la physique.

Description

L'atome est électriquement neutre. Il est composé d'un noyau, et d'électrons.

Le noyau est composé de nucléons représenté par un A, qui eux mêmes sont composés de neutrons N et de protons Z, ainsi A=N+Z .

Un noyau est représenté par avec X qui est le symbole de l'élément chimique de numéro atomique Z ( classé dans le tableau de classification périodique des éléments chimiques ).

Z correspond aussi au nombre d'électrons. ( il y a un nombre égal de protons et d'électrons pour que le noyau soit de charge neutres )

La masse d'un atome

La masse des électrons est négligeable devant celle du noyau.

On dit que la masse d'un atome est concentrée dans son noyau

La charge électrique d'un atome

C'est la somme de la charge électrique + des particules du noyau et celle – des électrons.

Cette somme est nulle : On dit que l'atome est électriquement neutre.

Les charges électriques étant les même, il y a autant d'électrons qui gravitent autour du noyau que de particules le constituant.

Exemple : L'atome de fer a 26 électrons et 26 particules + dans son noyau.

La taille d'un atome

Elle est infiniment petite.

Le diamètre d'un atome vaut en moyenne 10-1 nm ( 1 nm = 10 -9 m ).

Le diamètre du noyau vaut en moyenne 10-6 nm.

Le noyau est 100 000 fois plus petit que l'atome.

Entre les électrons et le noyau, il n'y a que du vide... Beaucoup de vide !

On parle de la structure lacunaire de l'atome.

Interactions fondamentales

Les 3 interactions fondamentales sont:

  1. L'interaction gravitationnelle qui est responsable de la pesanteur, de la marée ;
  2. L'interaction électromagnétique qui est responsable de l'électricité ;
  3. L'interaction forte qui est responsable de la cohésion des noyaux atomiques.

( une autre interaction est aussi présente: c'est l'interaction faible, mais son étude n'est pas prévu au programme de première. Mais on peut tout de même dire qu'elle est responsable de la désintégration bêta qu'on associe avec la radioactivité bêta. )

Formule de l'interaction gravitationnelle

    \[F _ { A/B} = F _ { B/A} = G \times \frac { m _ A \times m _ B } { d ^ 2 } \]

  • Avec F en Newton ( N )
  • G ( constante de gravitation universelle ) = 6,67.10-11 N.m2.kg-2
  • m en kg
  • d en mètre

Loi de la gravitation universelle de Newton ( 1687 ) : "La force de gravitation est proportionnelle aux masses mA et mB et inversement proportionnelle au carré de la distance entre A et B."

exemple:

    \[ F _ { T/L} = F _ {L/T} = G \times \frac { m _ T \times m _ L } { d ^ 2 } \]

Formule de l'interaction électrique

    \[ F _ { A/B } = k \times \frac { \mid Q _ A \mid \times \mid Q _ B \mid } { d ^ 2 } \]

  • Avec F en Newton (N)
  • k est une constante valant 9,0.109 N.m2.C-2
  • Q est exprimé en Coulomb
  • d est en mètre

Loi de Coulomb

Coulomb, un physicien français, a établi en 1758 que le champ doit varier comme le carré inverse de la distance entre les charges à une précision de 0,02 sur l'exposant avec l'aide d'un dispositif appelé balance de Coulomb. Cette balance est constituée d'un fil de torsion en argent sur lequel est fixé des matériaux chargés. Ainsi, la loi d'attraction entre deux charges ponctuelles notées q1 et q2 , fixes dans le référentiel défini et séparées par une distance r, se définit ainsi :

  • La force est dirigée selon la droite reliant les deux charges ;
  • Elle est attractive si les charges sont de signes opposée et répulsive sinon ;
  • Son intensité est proportionnelle aux valeurs de q1 et q2 et varie en raison inverse du carré de la distance r.

Il est alors possible de traduire ces caractéristiques en une formule exprimant la force exercée par q1 sur q2 :

    \[ \overrightarrow{ f _ { e } } = \frac { 1 } { 4 \pi \epsilon _ { 0 } } \frac { q _ { 1 } q _ { 2 } }{ r ^ { 2 } } \overrightarrow { e _ { r } } \]

Avec :

  •     \[ \overrightarrow { e _ { r } } \]

    le vecteur unitaire de la droite reliant q1 et q2 qui est dirigée dans le sens 1 vers 2

  •     \[ \epsilon _ { 0 } \]

    la permittivité diélectrique du vide

Ce qui peut rendre la compréhension de cette formule compliquée est la notion de force à distance. En effet, comment une charge peut savoir qu'une autre charge ponctuelle se trouve à une certaine distance d'elle et alors exercer sur force sur cette charge en fonction de la distance qui les sépare.

Dans ce cas, tout comme pour un champ gravitationnel, il peut être utile de séparer dans la loi de force ce qui dépend de la charge subissant la force et donc d'obtenir la relation suivante :

    \[ \begin{cases} \overrightarrow { f } = q _ { 2 } \left[ \frac { 1 } { 4 \pi \epsilon _ { 0 } } \frac { q _ { 1 } } { r ^ { 2 } } \overrightarrow { e _ { r } } \right] = q _ { 2 } \overrightarrow { E } \\ \overrightarrow{ E } = \frac { 1 } { 4 \pi \epsilon } \frac { q _ { 1 } }{ r ^ { 2 } } \overrightarrow { e _ { r } } \end{cases} \]

Avec :

  •     \[ \overrightarrow { E }  \]

    un champ électrique électrostatique créé à partie de la charge q1 au point où se trouve la seconde charge q2

Ainsi, avec cette relation, il est plus aisé d'interpréter l’existence d'une force à distance. En effet, la charge considérée comme "source", c'est-à-dire q1, crée en tout point de l'espace un champ électrique dont la forme est donnée par la relation exprimée ci-dessus, et une charge quelconque considérée comme "test" subira l'effet de ce champ sous la forme d'une force égale au produit de cette charge par le champ électrostatique. Dans ce cas, ce champ électrostatique apparaîtra comme la force entre deux particules ponctuelles fixes par unité de charge.

Interaction forte

Le noyau est constitué de nucléons ( protons et neutrons ) qui restent groupé ( donc attractivité ).
Or l'interaction gravitationnelle ( qui est attractive mais seulement à partir d'une certaine masse ) est très faible comparée à l'interaction électrique répulsive qui existe entre les protons.
Pour que les nucléons restent donc groupés, il faudrait la présence d'une troisième force attractive pour former le noyau: c'est l'interaction forte.

Nom de l'interactionPortéeIntensitéEffet avec la distance
Interaction gravitationnelleInfinie10-36Décroît avec la distance
Interaction électromagnétiqueInfinie10-2Décroît avec la distance
Interaction forte10-13 cm1Croît avec la distance

Les liaisons de l'atome

Dans un solide moléculaire les atomes sont liés par des liaisons covalentes : les deux atomes mettent en commun leurs électrons célibataires pour créer un doublet liant.

Quand les deux atomes sont identiques, la paire d’électron qui relie les deux atomes est répartie équitablement entre les deux atomes. On dit alors que la molécule est apolaire.

Quand deux atomes qui mettent leurs électrons en jeu sont différents et qu’il existe une différence d’électronégativité significative entre ces deux atomes, la liaison est dire polarisée et on appelle ce type de molécule, molécule polaire.

Une liaison covalente est dite polarisée si les deux atomes qui sont liés ont des électronégativités très différentes. En effet, dans ce cas, un des deux atomes aura tendance à attirer les électrons, ce qui a pour effet de polariser la liaison. Plus la différence d’électronégativité est grande et plus la polarisation de la liaison sera importante. Il se forme ainsi une sorte de dipôle électrique.
Le décalage des électrons conduit à noter une charge partielle négative δ– sur l’atome le plus électronégatif et une charge partielle positive δ+ sur le moins électronégatif

La stabilité des structures électroniques est aussi impactée par l'électronégativité.

L’électronégativité d'un élément est sa capacité à attirer les électrons lors de la création de liaisons chimiques avec d'autres éléments

On peut trouver l'électronégativité d'un élément grâce à sa position dans le tableau périodique des éléments.
En effet il existe un lien entre la période et l'électronégativité.

Par exemple, en lisant le tableau de gauche à droite, sur une période, l'électronégativité augmente. Il en va de même si on lit le tableau de bas en haut par colonne.

La classification périodique des éléments, aussi appelée tableau de Mendeleïev, du nom de son créateur. C’est un chimiste russe qui en 1869 créa un tableau dont le but était de regrouper tous les éléments chimiques connus par points communs (groupes et familles par exemple). Il a souvent été ajusté et mis à jour depuis cette époque.

Sa dernière révision date de 2016 par l’UICPA (Union internationale de chimie pure et appliquée), une ONG suisse qui a pour but l’évolution de la physique-chimie. Le tableau périodique compte à ce jour 118 éléments.

La structure atomique

Composition du noyau

Le noyau d'un atome se compose d'éléments que l'on appelle les nucléons. Ce sont eux qui définissent le nombre de masse d'un atome.

Le nombre de masse d’un atome est le nombre de nucléons qu’il contient. Il s’agit donc de la somme du nombre de protons et du nombre de protons qui constituent le noyau de l’atome

Dans ces nucléons se trouvent des protons dont la charge est positive et des neutrons à charge neutre. Ces deux composants sont très fortement liés entre eux.

Le rayon d'un nucléon est d'environ 10-15 m alors que l'atome tout entier a un diamètre avoisinant les 10-10 m.

Stabilité de l'atome

Pourquoi utiliser la radioactivité ? On utilise la radioactivité pour créer de l'électricité car il s'agit aujourd'hui de la façon la plus simple avec le meilleur rendement.

Pour que le noyau et les électrons restent stables entre eux. Ils sont donc liés par une énergie de liaison. Si ils ne sont pas bien liés entre eux, les atomes deviennent instables et se transforment. Ils sont donc radioactifs.

Il existe trois types de radioactivité.

Radioactivité gamma

La radioactivité gamma est un rayonnement provoqué par une désintégration gamma. Le plu souvent, ces désintégrations accompagnent des désintégrations alpha ou bêta. En effet, quand il émet un rayon alpha ou bêta, le noyau devient excité. Lors de l’émission d’un rayonnement électromagnétique gamma, le noyau peut donc redescendre à un état plus stable.

Radioactivité bêta

La radioactivité bêta est un type de désintégration radioactive où une particule bêta (électron ou positron) est émise. On parle de radioactivité bêta + quand un positron est émis mais on parle de radioactivité – quand c’est un électron qui est émis.

Radioactivité alpha

La radioactivité alpha est un rayonnement provoqué par une désintégration alpha qui est une désintégration radioactive où un noyau atomique éjecte une particule alpha qui se transforme en un autre noyau dont le nombre de masse est diminué de 4 et le numéro atomique de 2 à cause de la particule alpha manquante qui est analogue au noyau d’hélium 4.

Stabilité du noyau

Certains noyaux qui ont une bonne énergie de liaison restent stables. En réalité, la stabilité n'existe pas vraiment. On considère qu'on atome est stable quand sa demie-vie est égale à 1033 années, soit la durée de vie du proton.

En conclusion, il n'existe aucun noyau qui soit réellement stable à l'échelle de l'Univers. Par exemple, le diamant que nous trouvons tous très solide et stable est instable à l'échelle de la Terre mais stable à l'échelle de l'Homme.

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (4,00/ 5 pour 1 votes)
Loading...

Clément

Freelancer et pilote, j'espère atteindre la sagesse en partageant le savoir que j'ai acquis lors de mes voyages au volant de ma berline. Curieux scientifique, ma soif de découverte n'a d'égale que la durée de demie-vie du bismuth 209.

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide