Généralités sur les suites

Termes ; indices (ou rang) ; suite

Une suite numérique est une fonction qui à tout entier naturel n de N associe un nombre réel noté u(n) qui est le terme de rang n.
Exemple : Suite des carrés des entiers naturels
u(0)=0 ; u(1)=1 ; u(2)=4 ; u(3)=9 ; u(4)=16 ; ...
Terme général: u(n)=n²

Modes de génération d'une suite

Suite définie par une formule explicite

Le terme général est donné en fct de l'indice n sous la forme u(n)=f(n) où f est définie sur une intervalle [a ;+oo[ (avec a#0)
Exemple : A la fct f : x-> 2x-1 définie sur [0 ;+ oo[ on associe la suite de terme général u(n)=2n-1

Suite définie par une relation de récurrence

On donne alors : - le terme initial
- une relation de récurrence : u(n+1)=f(u(n)) qui permet d'obtenir le terme suivant à partir du précédent.
Exemple : Soit la suite définie par :
u(0)=3
u(n+1)= 5u(n)-1

Les meilleurs professeurs de Maths disponibles
Houssem
4,9
4,9 (120 avis)
Houssem
55€
/h
Gift icon
1er cours offert !
Moujib
5
5 (83 avis)
Moujib
75€
/h
Gift icon
1er cours offert !
Greg
5
5 (165 avis)
Greg
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (112 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Nicolas
4,9
4,9 (139 avis)
Nicolas
35€
/h
Gift icon
1er cours offert !
Térence
4,9
4,9 (67 avis)
Térence
60€
/h
Gift icon
1er cours offert !
Sébastien
4,9
4,9 (81 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Grégory
5
5 (102 avis)
Grégory
125€
/h
Gift icon
1er cours offert !
Houssem
4,9
4,9 (120 avis)
Houssem
55€
/h
Gift icon
1er cours offert !
Moujib
5
5 (83 avis)
Moujib
75€
/h
Gift icon
1er cours offert !
Greg
5
5 (165 avis)
Greg
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (112 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Nicolas
4,9
4,9 (139 avis)
Nicolas
35€
/h
Gift icon
1er cours offert !
Térence
4,9
4,9 (67 avis)
Térence
60€
/h
Gift icon
1er cours offert !
Sébastien
4,9
4,9 (81 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Grégory
5
5 (102 avis)
Grégory
125€
/h
Gift icon
1er cours offert !
C'est parti

Suites croissantes ou décroissantes

Définition

Une suite (u(n)) est croissante si pour tout n de N, u(n+1)≥u(n)
Une suite (u(n)) est décroissante si pour tout n de N, u(n+1)≤u(n)

>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 4,00 (3 note(s))
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !