Chapitres
Exercice 1
On se propose de résoudre l'équation différentielle (E) : y' + y = x + 1 , y étant une fonction de la variable réelle x et y' sa dérivée.
a) On pose z=y-x ; écrivez l'équation différentielle (F) satisfait par z.
b) Résolvez (F), puis (E).
Exercice 2
On appelle fα la solution de (E) telle que fα (0) = α
a) Démontrez que, pour tout α , la tangente à Cα au point d'abscisse -1 passe par l'origine du repère.
b) Plus généralement, démontrez que toutes les tangentes aux courbes Cα en un point d'abscisse x0 donnée se coupent sur C0. (non corrigé)
Salut !
Mets un titre plus adapté, du type : exercice type bac – équation différentielle.
Bonne continuation ! 😉