Exercice 1

Soit f une fonction définie sur
R.
Donner dans chaque cas une primitive de
f :

a. f(x) = 2x

b. f(x) = x + 2

c. f(x) = 3x – 1

d. f(x) = -x² + 5x – 1

e. f(x) = (x – 3) / 2

Les meilleurs professeurs de Maths disponibles
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert>

Exercice 2

Pour chacune des fonctions suivantes,
donner l'ensemble des primitives de f :

a. f(x) = 2x² + 3x + 1

b. f(x) = -x² + 1

c. f(x) = ex

Exercice 3

On considère la fonction f
définie sur R par f(x) = cos x.
Donnez une primitive de f qui donne la
valeur 0 en 2.

Exercice 4

Pour chacune des fonctions ci-dessous,
donnez l'ensemble de définition sur lequel f a des
primitives, puis donner l'ensemble des primitives de f.

a. f(x) = x5

b. f(x) = 1 / x2

c. f(x) = 2x
/ (x² + 1)

Exercice 5

Donnez une
primitive de chaque fonction f et l'intervalle sur laquelle est
définie cette primitive.

a. f(x) = 2(2x +
1)3

b. f(x) = (-x +
1)-4

c. f(x) = (2x + 3) / (x² + 3x + 3)

d. f(x) = 1/x (ln x)²

e. f(x) = 1 / √(x
+ 1)

f.
f(x) = 3x / √(x² + 1)

Correction de l'exercice 1

a. F(x) = x²

b. F(x) = 1/2x² + 2x

c. F(x) = 3/2x² – x

d. F(x)
= -1/3x3 + 5/2x² - x

e. F(x)
= 1/4x² - 3/2x

Correction de l'exercice 2

a. F(x) = 2/3x3 + 3/2x²
+ x + a, avec a dans R.

b. F(x) = -1/3x3 + x + a,
avec a dans R.

c. F(x)
= ex + a, avec a dans R.

Correction de l'exercice 3

F(x) =
-sin x + a, avec a dans R.
Or sin
0 = 0, donc, -sin 0 + 2 = 2.
Par
conséquent, la primitive de f qui donne la valeur de 0 en 2
est -sin x + 2.

Correction de l'exercice 4

a. f(x) = x5
f admet des primitives sur R.
F(x) =
1/6x6 + k, avec
k dans R.

b. f(x) = 1 / x2
f admet des primitives sur R \ {0}.
F(x) =
- 1 / x + k, avec k dans R.

c. f(x)
= 2x / (x² + 1)
f admet
des primitives sur R \ {0}.
F(x) =
ln |x² + 1| + k, avec k dans R.

Correction de l'exercice 5

a. f(x) = 2(2x +
1)3
f est une fonction
polynôme donc elle est continue sur R, et a des primitives sur
R.
F(x) = ¼
(2x + 1)4

b. f(x) = (-x +
1)-4
f est une fonction
rationnelle, donc elle est continue en tout point où elle est
définit.
Ainsi f est
définit sur ]-∞ ;
1[ et sur ]1; +∞[.
Donc
f a des primitives sur ]-∞ ; 1[ (on pourrait également
choisir ]1; +∞[).
On
peut donc écrire : f(x) = -1 * [-(-x + 1)-4].
Ainsi
f est de la forme : -u'(x)(u(x))n, donc f a pour primitive
:
F(x)
= - 1 / (n + 1).un+1 = 1/3 (-x + 1)-3

c. f(x) = (2x + 3) / (x² + 3x + 5)
On remarque que f est de la forme u'(x)
/ u(x).
Calculons l'ensemble pour lequel f est
définit.
Calculons : x² + 3x + 3 = 0
Δ
= 9 – 4*3 = -3. Donc Δ
< 0 ce qui signifie que l'équation n'admet pas de racines
sur R.
Donc f est définit sur R.
F(x) = ln (x² + 3x + 3).

d. f(x) = 1/x (ln x)²
f est définit sur ]0 ; +∞[.
Calculons une primitive de f sur cet intervalle :
f est de la forme u'(u(x))². On a
donc :
F(x) = 1/3(ln x)3

e. f(x) = 1 / √(x
+ 1)
f
est définit sur ]-1 ; +∞[.
Calculons une primitive de f sur cet intervalle :
f
est de la forme u' / √(u(x)). On a donc :
F(x)
= 2√(x + 1)

f.
f(x) = 3x / √(x² + 1)
f
est définit sur R car x² + 1 ne s'annule jamais.
On
peut écrire :
f(x)
= 3/2 * (2x) / √(x² + 1)
f
est de la forme 3/2 * u' / √(u(x)). On a donc :
F(x)
= 3√(x² + 1)

Besoin d'un professeur de Maths ?

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00/5 - 1 vote(s)
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !