Définition

Une équation du second degré a pour forme générale ax²+bx+c=0. Pour résoudre ce type d'équations, on factorise soit en trouvant un facteur commun, soit grâce aux identités remarquables.
Une équation du second degré peut avoir 0, 1 ou 2 solutions.

Méthode pour résoudre une équation du second degré

Pour résoudre une équation du second degré :
a)On regroupe tous les membres du côté gauche
b)On factorise l'expression obtenue
c)On résout l'équation-produit obtenue
d)On donne l'ensemble des solutions

- Cas où l'équation à deux solutions :
Exemple :
Résoudre x²-16= (2x+1)(x+4)

Etape 1 :
On place tous les termes de l'équation à gauche du signe égal, de façon à obtenir « 0 » à droite.
On a alors x²-16-(2x+1)(x+4)=0

Etape 2 :
On factorise le côté gauche de l'équation en utilisant la méthode de factorisation habituelle et/ou grâce aux identités remarquables.

Ici on reconnaît d'ailleurs l'identité remarquable « a²-b² » qui permet de factoriser le premier membre du calcul sous la forme « (a-b)(a+b)»
On obtient alors :
(x+4)(x-4)-(2x+1)(x+4)=0
On reconnaît alors le facteur commun « (x+4) » qui permet de factoriser l'ensemble du calcul.

Etape 3 :
Une fois la factorisation effectuée, on obtient un produit de facteurs du premier degré (ne contenant plus de « x² »). La forme obtenue est appelée équation-produit.
(x+4)[(x-4)-(2x+1)]=0
(x+4)(x-4-2x-1)=0
(x+4)(-x-5)=0

Etape 4 :
Pour résoudre cette équation-produit, on applique la règle suivante : Un produit de facteurs est nul si l'un au moins des facteurs est nul.
Donc
Soit x+4=0 et ainsi x=-4
Soit x-5=0 et ainsi x=5 puis x=-5

L'équation à deux solutions : S={-5 ;-4}

Cas où l'équation a une seule solution :

Exemple :
Résoudre 3x²+12=12x

Etape 1 :
On place tous les nombres à gauche.
3x²-12x+12=0

Etape 2 :
On met « 3 » en facteur dans les trois membres, ce qui fait apparaître l'identité remarquable « a²-2ab+b² »
3(x²-4x+4)=0

Etape 3 :
On factorise grâce à l'identité remarquable ci-dessus, ce qui permet d'obtenir une équation-produit.
3(x-2)²=0
3(x-2)(x-2)=0

Etape 4 :
On résout l'équation-produit, qui a une solution :
(x-2)=0
x=2

L'équation a une seule solution :
S={2}

Cas où l'équation n'a aucune solution :
Exemple : résoudre x²-8x+7=6-8x

Etape 1 :
On place tous les nombres à gauche de l'équation et on réduit le calcul.
x²-8x+8x+7-6=0
x²+1=0

Etape 2 :
On ne peut factoriser le côté gauche car on n'a ni facteur commun, ni identité remarquable. On a une somme de deux carrés : La somme de deux nombres positifs est toujours strictement positive.
Donc pour tout réel x, x²+1#0
L'équation est impossible. Elle n'a donc aucune solution : S= ensemble vide «(représenté par un zéro barré)

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (Aucun vote)
Loading...

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide