Correction d'un devoir

Enoncé
On donne un cercle C de centre O et un point A. M étant un point de C, on construit le triangle équilatéral MNP de centre de gravité A.
1) Quel est l’ensemble décrit par chacun des points N,et P lorsque M décrit C?(expliquer).
On donne un triangle ABC et un point M quelconque dans le plan. On appelle I le milieu de [BC], N le milieu de [AM] et M’ le milieu de [IN]. On désigne h la transformation qui associe M’ à M.
2)a- Construire l’image A’ de A par h.
b- Exprimer le vecteurA’M’ en fonction du vecteurAM. Reconnaître h.
Pistes
Merci de votre aide. Caroline
Réponse de notre équipe pédagogique :
On donne un cercle C de centre O et un point A. M étant un point de C, on construit le triangle équilatéral MNP de centre de gravité A.

1) Quel est l’ensemble décrit par chacun des points N,et P lorsque M décrit C?(expliquer).

Pour trouver P à partir de M, on applique une rotation de centre A d’"un angle fixe : 2Pi/3 : en effet, les angles à la base du triangle équiltéral valent Pi/3 donc l’angle MAP = Pi-((Pi/3)/2 -(Pi/3)/2) = 2Pi/3. Donc le lieu des points P quand M décrit C est l’image de ce cercle par la rotation d’angle 2Pi/3 de centre A.Donc il faut trouver O’ l’image de O par cette rotation.

L’image d’un cercle par une rotation est un cercle (la rotation conserve les figures) de même rayon (la rotation conserve les distances) : il suffit donc d’avoir l’image du centre pour tracer le cercle.

Idem pour N avec - 2Pi/3

On donne un triangle ABC et un point M quelconque dans le plan. On appelle I le milieu de [BC], N le milieu de [AM] et M’ le milieu de [IN]. On désigne h la transformation qui associe M’ à M.

2)a- Construire l’image A’ de A par h.

N est le milieur de [AA] donc N = A puis A’ est le milieu de [AI]

b- Exprimer le vecteurA’M’ en fonction du vecteurAM. Reconnaître h.

en vecteur : A’M’ = A’I + IM’ = A’I + 1/2 IN = A’I + 1/2(IA + AN) = 1/2 AI +1/2IA +1/2(1/2(AM)) = 1/4 AM

Donc A’M’ = 1/4 AM h est donc une homothétie.

 

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (3,00/ 5 pour 1 votes)
Loading...

Maelys

Vous avez aimé
cette ressource ?

Bravo !

Téléchargez-là au format pdf en ajoutant simplement votre e-mail !

{{ downloadEmailSaved }}

Votre email est invalide