Ce qu'il faut savoir

L'ensemble de définition d'une fonction est l'ensemble des valeurs de x pour lesquelles la fonction est définie, c'est-à-dire pour lesquelles on peut calculer la valeur de f(x).

Par exemple, dés qu'il y a une fonction avec une partie fractionnaire, toute valeur de x qui annule le dénominateur est à exclure de l'ensemble de définition car on ne peut pas diviser par 0.

 La notion d'asymptote est indissociable de la notions de limite. La limite donne la valeur vers laquelle se dirige la fonction et l'asymptote précise comment la fonction tend vers la limite.

Une droite asymptotique signifie que la fonction se dirige vers sa limite en étant le plus de plus en plus proche de la droite en question.

La tangente à une courbe est une droite passant par un point de la courbe et dont la pente ( le coefficient a dans l'équation y= ax + b) est égale à la dérivée de la fonction en ce point. En effet la dérivée d'une fonction donne comment évolue la fonction en tout point. Cela correspond bien à donner la pente de la courbe en tout point.

Pour calculer une asymptote oblique il faut toujours se débrouiller pour faire apparaître une équation de droite dans l'expression de la fonction et voir si la partie restante peut tendre vers 0 ou pas.

Les meilleurs professeurs de Maths disponibles
1er cours offert !
Anis
4,9
4,9 (76 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (94 avis)
Greg
120€
/h
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
60€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (77 avis)
Ahmed
50€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert !
Anis
4,9
4,9 (76 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (94 avis)
Greg
120€
/h
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
60€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (77 avis)
Ahmed
50€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert>

Rappel sur les informations que peut fournir une asymptote

Une asymptote est une droite vers laquelle la fonction tend. C'est à dire que plus x va se rapprocher de la limite étudiée, plus la fonction sera presque égale à la droite « asymptote ». Pour trouver une asymptote d'une fonction il faut donc regarder comment évolue la fonction au voisinage de la limite recherchée. Or l'outil permet qui savoir comment évolue la fonction, c'est la dérivée. La dérivée va te donner en tout point de la fonction la valeur de la pente de la droite tangente à la fonction. Si la fonction tend vers une asymptote alors cela signifie que la fonction va tendre vers une droite qui lui sera tangente, c'est à dire vers une droite dont la pente est égale à sa dérivée.
Pour une asymptote oblique c'est pareil. La fonction tend vers une droite avec une pente non nulle et cette pente est égale à la limite de la dérivée de la fonction
Si on prend l'exemple de la fonction f(x) = 1/x + x + 5
La dérivée de cette fonction s'écrit f'(x) = -1/x² + 1
Quand x tend vers + l'infini f'(x) tend vers 1. Donc la dérivée a une limite finie quand x tend vers + l'infini ce qui signifie que la fonction finit par avoir une pente quasi constante, donc qu'elle finit par se comporter comme une droite.

Besoin d'un professeur de Maths ?

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00/5 - 1 vote(s)
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !