Définitions

Une fonction polynôme est une fonction P définie par une expression du type :
P(x) = anx^n + an-1x^n-1 + ... + a1x + a0
Les nombres a0,...,an sont appelés les coefficients de P.
Si an 0, n est appelé le degré de P.

Les meilleurs professeurs de Maths disponibles
Greg
5
5 (117 avis)
Greg
100€
/h
Gift icon
1er cours offert !
Anis
4,9
4,9 (80 avis)
Anis
70€
/h
Gift icon
1er cours offert !
Houssem
5
5 (109 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Laurent
4,9
4,9 (92 avis)
Laurent
50€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (46 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Grégory
5
5 (90 avis)
Grégory
115€
/h
Gift icon
1er cours offert !
Jean-charles
5
5 (21 avis)
Jean-charles
20€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (82 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Greg
5
5 (117 avis)
Greg
100€
/h
Gift icon
1er cours offert !
Anis
4,9
4,9 (80 avis)
Anis
70€
/h
Gift icon
1er cours offert !
Houssem
5
5 (109 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Laurent
4,9
4,9 (92 avis)
Laurent
50€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (46 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Grégory
5
5 (90 avis)
Grégory
115€
/h
Gift icon
1er cours offert !
Jean-charles
5
5 (21 avis)
Jean-charles
20€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (82 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Opérations sur les degrés

Soit P et Q deux fonctions polynômes non nulles. Alors :
deg (PQ) = deg P + deg Q
et deg (P + Q) 0, S = {(-b-Racine de D)/2a, (-b+Racine de D)/2a}

Somme et produit des racines

Théorème 4 :
Si le trinôme P(x) = ax² + bx + c, avec a 0, admet deux racines x1 et x2 alors :
x1 + x2 =-b/a et x1 x2 =c/a .

Remarque : ces formules restent valables si les racines sont confondues.
Théorème 5 : Les solutions du système sont les couples (u, v) tels que u et v soient les solutions de l'équation du second degré x² - Sx + P = 0.

Remarque : quand on connaît une solution (u, v) du système on a entièrement résolu celui-ci, car l'autre solution est (v, u).

Factorisation du trinôme

Théorème 6 :

Si le trinôme P(x) admet deux racines x1 et x2 (éventuellement confondues), alors pour tout réel x,
P(x) = a(x - x1)(x - x2).

Signe du trinôme

Théorème 7 :
Si D < 0, P(x) a le signe de a pour tout x.
Si D = 0, P(x) a le signe de a pour tout x .
Si D > 0, P(x) a le signe de a à l'extérieur des racines et le signe de (- a) entre les racines.

Remarque : un élève de première S doit connaître parfaitement ce résultat, mais peut, au début, faire rapidement un tableau de signes.

>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !