Coordonnées polaires , coordonnées paramétriques

Un point M(x,y)
(coordonnées cartésiennes) peut être repéré par ses coordonnées polaires
(r,t) : le
pôle est l'origine O, Ox est l'axe polaire.

Soit t = (Ox,OM)
l'angle de rotation amenant l'axe (O,) sur l'axe (O,) supportant M, en tournant dans le sens direct (sens trigonométrique).

Un point M est caractérisé
par l'angle, dit angle polaire de M, et par la mesure algébrique r
de OM sur (O, ). Le nombre r peut donc être positif ou négatif
(voire nul si M est O); c'est le rayon-vecteur de M.

En projetant un point M(x,y)
sur les axes, la trigonométrie élémentaire nous enseigne que x = r.cost et y = r.sint. Comme r dépend de t,
une courbe peut être définie par la donnée de : x = f(t)
et de y = g(t), on parle d'équation paramétrique ou
de représentation paramétrique d'une courbe ou encore de courbe
paramétrée. Le paramètre étant bien entendu le nombre réelt.

En résumé : Coordonnées :

cartésiennes M[x,f(x)]

paramétriques
M[x(t),y(t)]

polaires M[r,t]

Les meilleurs professeurs de Maths disponibles
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert>

Courbe plane en paramétrique

on a :

Une courbe plane est un ensemble C de couples (f(t),g(t))
où f et g sont des fonctions continues sur un intervalle I.
Une parabole, une sinusoïde sont
des courbes planes. Une ellipse, un cercle sont des courbes planes fermées.

Les équations x=f(t),y=g(t), pour t dans
I, sont des équations paramétriques de C de paramètre t.

I est le domaine de définition de f et
g. En éliminant le paramètre, lorsque cela est possible, on retrouve une
équation en x et y qui nous est beaucoup plus familière. Le graphique d’une
courbe paramétrée est construit à l’aide des points constituées par chacune des
valeurs de t, et que nous relions par la suite selon l’ordre croissant ou
décroissant de t.

Exemple : Traçons le graphique de
la courbe C dont la paramétrisation est donnée par:

Tableau des valeurs :

t

-1

-0.5

0

0.5

1.0

1.5

2.0

x

-2

-1

0

1

2

3

4

y

0

-3/4

-1

-3/4

0

5/4

3

Comme t évolue de –1 vers +2, on trace la
courbe selon la direction positive de l’axe des x.

Si on élimine le paramètre t, nous
retrouvons une équation que l’on reconnaît très bien, soit l’équation d’une
parabole :

 

 

Traçage sur un graphique

La tangente : Dans une équation
paramétrique où x=f(t) et y=g(t), la
détermination de la pente en un point de la courbe ou si l’on préfère la
dérivée en un point de la courbe se détermine très simplement en considérant le
fait qu’au lieu de dériver par rapport à x, on dérive par rapport à t
les fonctions f(t) et g(t). Comme la courbe évolue
dans un espace à deux dimensions et que le système de coordonnées demeure un
système cartésien, la définition de la dérivée conserve la même forme, soit
:

Comme x=f(t) et y=g(t),
si nous dérivons par rapport à t, nous obtenons:

La dérivée dy/dx se calculera
alors en divisant g’(t) par f ’(t).

Exemple: Calculons la dérivée au temps t=2
de la courbe paramétrique formée par :

Comme f(t)= et g(t)=
, alors ; et

Pour t=2, la dérivée ou la pente sera
égale à m=

Si nous devions calculer l’endroit sur la courbe où la
pente est nulle, il faudra prendre g’(t)=0.

Besoin d'un professeur de Maths ?

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00/5 - 1 vote(s)
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !