Définition

Les lettres a, b, c et d désignent des nombres avec a et c non nul. Une équation produit nul est une équation de la forme : (ax + b) (cx + d) = 0.

Les meilleurs professeurs de Maths disponibles
Greg
5
5 (117 avis)
Greg
110€
/h
Gift icon
1er cours offert !
Anis
4,9
4,9 (80 avis)
Anis
70€
/h
Gift icon
1er cours offert !
Houssem
5
5 (108 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Laurent
4,9
4,9 (91 avis)
Laurent
50€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (46 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Grégory
5
5 (90 avis)
Grégory
115€
/h
Gift icon
1er cours offert !
Jean-charles
5
5 (21 avis)
Jean-charles
20€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (82 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Greg
5
5 (117 avis)
Greg
110€
/h
Gift icon
1er cours offert !
Anis
4,9
4,9 (80 avis)
Anis
70€
/h
Gift icon
1er cours offert !
Houssem
5
5 (108 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Laurent
4,9
4,9 (91 avis)
Laurent
50€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (46 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Grégory
5
5 (90 avis)
Grégory
115€
/h
Gift icon
1er cours offert !
Jean-charles
5
5 (21 avis)
Jean-charles
20€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (82 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Propriété

Si l'un au moins des facteurs est nul alors le produit est nul.

Si A = 0 ou B = 0 alors A x B = 0

Réciproquement si un produit de facteur est nul alors l'un au moins des facteurs est nul.

Si A x B = 0 alors A = 0 ou  B = 0.

Exemple

 Résoudre

(x + 2) (3 – x) = 0

L'équation (x + 2) (3 – x) = 0 est une équation produit nul.

Or si un produit de facteur est nul alors l'un au moins des facteurs est nul.

Ainsi  (x + 2) (3 – x) = 0 revient à résoudre :

x + 2 = 0 ou 3 – x = 0

x = - 2 ou x = 3

L'équation produit nul (x + 2)(3 – x) = 0 admet deux solutions : -2 et 3.

(2x – 7)(x + 1) – x  2 + 1 = 0

(2x – 7)(x + 1) – x 2 + 1 = 0

(2x – 7)(x + 1) + (1 + x)(1 – x) = 0

(x + 1) (2x – 7 + 1 – x) = 0

(x + 1) (x – 6) = 0

Si un produit de facteur est nul alors l'un au moins des facteurs est nul.

x + 1 = 0 ou x – 6 = 0

x = -1 ou x = 6

Les solutions de l'équation sont -1 ou 6.

>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 4,00 (26 note(s))
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !