Qu'est-ce qu'un PGCD de deux nombres entiers ?

Parmi tous les diviseurs communs à deux nombres entiers a et b, il y en a un qui est plus grand que tous les autres : C'est le Plus Grand Commun Diviseur à a et b. On le note PGCD.

Les meilleurs professeurs de Maths disponibles
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert>

Qu'est ce que deux entiers premiers entre eux ?

On dit que deux entiers sont premiers entre eux si leur PGCD est égal à 1.

Qu'est-ce qu'une fraction irréductible ?

Une fraction dont le numérateur et le dénominateur sont premiers entre eux est irréductible.

Comment trouver le PGCD de deux nombres ?

Il existe plusieurs méthodes pour trouver le PGCD de deux nombres entiers. Quand il s'agit de « petits » nombres, on peut faire la liste des diviseurs de chacun des nombres proposés.

Exemples : Trouver le PGCD de 30 et 54.

→ Les diviseurs de 30 sont 1, 2, 3, 5, 6, 10, 15 & 30.

→ Les diviseurs de sont 1, 2, 3, 6, 9, 18, 27 & 54.

Le PGCD de 35 et 54 est 6.

En revanche, lorsqu'il s'agit de nombres bien plus grands : Essayons de trouver le PGCD de 510 et 357.

○ Un diviseur commun à 510 et 357 est aussi un diviseur commun à 510 et au reste de la division de 510 par 357.

On va ainsi, chercher le PGCD de deux nombres plus petits et répéter le procédé en effectuant des divisions successives jusqu'à ce que le reste obtenu soir nul, c'est à dire quand l'un des deux nombres sera diviseur de l'autre.

510 = 357 x 1 + 153 donc PGCD( 510 ; 357 ) = PGCD ( 357 ; 153 ).

357 = 153 x 2 + 51 donc PGCD( 357 ; 153 ) = PGCD ( 153 ; 51 ).

153 = 51 x 3 + 0 donc PGCD( 153 ; 51 ) = 51.

Conclusion : 51 est un diviseur de 153. Le PGCD de 510 et 357 est donc 51 ( -dernier reste non nul ).

Comment simplifier une fraction ?

Pour rendre une irréductible une fraction, on divise son numérateur et son dénominateur par leur PGCD.

Besoin d'un professeur de Maths ?

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 1,20/5 - 5 vote(s)
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !