Définition

La fonction cosinus notée cos et la fonction sinus notée sin sont les fonctions définie sur R qui à tout réel x associent respectivement cos x et sin x.

Les meilleurs professeurs de Maths disponibles
Greg
5
5 (109 avis)
Greg
100€
/h
Gift icon
1er cours offert !
Anis
4,9
4,9 (79 avis)
Anis
70€
/h
Gift icon
1er cours offert !
Houssem
5
5 (106 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Laurent
4,9
4,9 (91 avis)
Laurent
50€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (45 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Grégory
5
5 (89 avis)
Grégory
125€
/h
Gift icon
1er cours offert !
Jean-charles
5
5 (21 avis)
Jean-charles
20€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (82 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Greg
5
5 (109 avis)
Greg
100€
/h
Gift icon
1er cours offert !
Anis
4,9
4,9 (79 avis)
Anis
70€
/h
Gift icon
1er cours offert !
Houssem
5
5 (106 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Laurent
4,9
4,9 (91 avis)
Laurent
50€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (45 avis)
Pierre-thomas
60€
/h
Gift icon
1er cours offert !
Grégory
5
5 (89 avis)
Grégory
125€
/h
Gift icon
1er cours offert !
Jean-charles
5
5 (21 avis)
Jean-charles
20€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (82 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Propriétés

= R  x → cos x = R  x → sin x
Pour tout réel x, cos (–x) = cos x.
conséquence : l'axe des ordonnées est axe de symétrie de dans un repère orthogonal.
Pour tout réel x, sin (–x) = – sin x.
conséquence : l'origine du repère est centre de symétrie de dans un repère cartésien.
Pour tout réel x, cos (x + 2π) = cos x
La fonction est périodique de période 2π.
Pour tout réel x, cos (x + 2π) = cos x
La fonction est périodique de période 2π.
Conséquences : il
suffit de tracer la courbe sur un intervalle d'amplitude 2π puis par translation
de vecteur , on obtient toute la courbe.

Sens de variation

x → cos x

Les représentations graphiques des fonction cosinus et sinus sont des sinusoïdes.

x → sin x

>

La plateforme qui connecte profs particuliers et élèves

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !