Définition

Une fonction affine est une fonction définie sur R par f (x) = mx + p où m et p sont deux réels donnés.

Exemple :

f : R → R
x → 2x + 3

f (x) = 2x + 3

Remarques :

  • Si p = 0, f (x) = mx
    f est une fonction linéaire.
  • Si m = 0, f (x) = p
    f est une fonction constante.
Les meilleurs professeurs de Maths disponibles
1er cours offert !
Greg
5
5 (100 avis)
Greg
110€
/h
1er cours offert !
Anis
4,9
4,9 (79 avis)
Anis
70€
/h
1er cours offert !
Houssem
5
5 (106 avis)
Houssem
50€
/h
1er cours offert !
Laurent
4,9
4,9 (91 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (87 avis)
Grégory
110€
/h
1er cours offert !
Ahmed
4,9
4,9 (79 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (44 avis)
Pierre-thomas
60€
/h
1er cours offert !
Greg
5
5 (100 avis)
Greg
110€
/h
1er cours offert !
Anis
4,9
4,9 (79 avis)
Anis
70€
/h
1er cours offert !
Houssem
5
5 (106 avis)
Houssem
50€
/h
1er cours offert !
Laurent
4,9
4,9 (91 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (87 avis)
Grégory
110€
/h
1er cours offert !
Ahmed
4,9
4,9 (79 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (44 avis)
Pierre-thomas
60€
/h
1er cours offert>

Représentation graphique

La représentation graphique d'une fonction affine définie sur R par f (x) = mx + p est la droite (d) d'équation y = mx + p.

m est le coefficient directeur de (d).
p est l'ordonnée à l'origine (c'est l'ordonnée du point d'abscisse 0 de (d)).

(d) a pour équation y = mx + p

Exemple :

f (x) = 2x + 3
f est une fonction affine. Sa représentation graphique est la droite d'équation y = 2x + 3.

x 1 0
y 5 3

Sens de variation d'une fonction affine

Propriété :

f : x → mx + p définie sur R (m ≠ 0)

  • Si m > 0, f est croissante sur R.
  • Si m < 0, f est décroissante sur R.

Démonstration :

Soient a et b deux réels tels que a < b.
On cherche le signe de f (b) – f (a)

f (b) – f (a) = mb + p – (ma + p)
= mb + p – ma – p
= m (b – a)

On sait que b > a donc b – a > 0

  • Si m > 0, m (b – a) > 0
    càd f (b) – f (a) > 0
    f (b) > f (a)

Donc si a < b alors f (b) > f (a)
et m > 0

On a démontré que si m > 0, f est croissante sur R.

  • Si m < 0, m (b – a) < 0
    càd f (b) – f (a) < 0
    f (b) < f (a)

Donc si a < b alors f (b) < f (a)
et m < 0

On a démontré que si m < 0, f est décroissante sur R.

Prêt pour des cours de math 3eme ?

Fonctions affines et proportionnalité

Théorème :

f est un fonction affine non constante si et seulement si l'accroissement de l'image est proportionnel à l'accroissement de la variable.

Démonstration :

  • Soit f une fonction affine non constante.
    f (x) = mx + b, m ≠ 0
    Soient a et b deux réels quelconques.
    f (b) – f (a) = (mb + p) – (ma + p)
    = mb + p – mb – p
    = m (b – a)
    Donc si a et b sont distincts,Conclusion : f (b) –f (a) et b – a sont proportionnels.
  • Soit f une fonction définie sur R telle que f (b) – f (a) et b – a soient proportionnels.Soit m le coefficient de proportionnalité.
    Donc pour tous les réels a et b distincts.

    f (b) – f (a) = m (b – a)

    En particulier :

    Pour b = x
    a = 0
    f (x) – f (0) = m (x – 0)
    f (x) – f (0) = mx
    f (x) = mx + f (0)          p = f (0)

    Donc f est un fonction affine non constante.

Exemple :

Déterminer la fonction affine f telle que :
f (2) = –3
f (–1) = 5

f est une fonction affine donc pour tout réel x, f (x) = mx

On détermine p en écrivant que f (2) = –3

Besoin d'un professeur de Maths ?

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00/5 - 1 vote(s)
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !