I-NOTION D'APPLICATION

1-)définition

Soit f une correspondance d'un ensemble A vers un ensemble B.
f est une application si chaque element de A a un et seul correspondant dans B.
A est appelé ensemble de depart et B ensemble d'arrivé.
2-)vocabulaire
Une application f d'un ensemble A vers un ensemble B qui a un reel x associe f(x) est notée:
f:  A------>B
x------->f(x)
exemple:
soit f une aplication tel que f: R--------->R
x---------->x+2
on lit f est une application de R vers R qui à x associe f(x)=x+2.
3-)image et antecedent.
soit f: R--------->R
x--------->y
on note f(x)=y
y est l'image de x par f et x est un antecedent de y par f.
remarque:  un reel peut admettre plusieurs antecedents.
exemples.

soit l'application f: R------->R
x------>2x+3
1-calculer les images de -1;0
2-determiner l'ensemble des antecedents de 1;3 et 5
solution:
ona f(x)=2x+3
1-  pour trouver l'image de -1 on calcule f(-1) c'est a dire remplacer x par -1 on aura :
f(-1)=2*(-1)+3=1 d'ou -1 a pour image par f:   1
f(0)=2*0+3=3 d'ou 0 a pour image par f:   3
2- pour determiner les entecedents de 1 on resoud l'equation f(x)=1
c'est a dire 2x+3=1 on aura x=-1 d'ou -1 est un antecedent de 1 par f.
meme chose pour les autres.

Les meilleurs professeurs de Maths disponibles
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert !
Houssem
5
5 (105 avis)
Houssem
70€
/h
1er cours offert !
Anis
4,9
4,9 (78 avis)
Anis
80€
/h
1er cours offert !
Greg
5
5 (95 avis)
Greg
120€
/h
1er cours offert !
Laurent
4,9
4,9 (86 avis)
Laurent
50€
/h
1er cours offert !
Grégory
5
5 (83 avis)
Grégory
105€
/h
1er cours offert !
Ahmed
4,9
4,9 (78 avis)
Ahmed
40€
/h
1er cours offert !
Jean-charles
5
5 (20 avis)
Jean-charles
20€
/h
1er cours offert !
Pierre-thomas
5
5 (40 avis)
Pierre-thomas
80€
/h
1er cours offert>

II-APPLICATIONS PARTICULIERES

1-)injection:
Soit l'application f:A------->B, f est injective ou encore f est une injection si deux elements distinctes de A on des images distinctes dans B.
2-)surjection:
soit l'application f: A--------->B, f est surjective ou f est une surjection
si chaque element de B admet au moins un antecedent.(AU MOINS
UN SIGNIFIE 1 OU 2 OU 3 OU ......... OU PLUSIEURS)
3-)bijection:
soit l'application f: A--------->B, f est bijective ou f est une bijection si chaque element de B admet un et un seul(UN ET UN SEUL SIGNIFIE UN UNIQUE ) antecedent dans A.

III-EXERCICES D'APPLICATION

A-COMMENT DEMONTRER QU'UNE APPLICATION EST INJECTIVE?
1- soit f une application de R dans R qui à x associe 2x+3.
f est-elle injective?

solution: soit a et b appartenant à l'ensemble de depart (ici R) tel que f(a)=f(b) montrons que a=b.

f(a)=f(b) si et seulement si 2a+3=2b+3  en simplifiant on aura  a=b d'oû f est injective.

2-soit f une application de Z dans R qui à x associe x2+1.

f est-elle injective

solution:soit a et b appartenant à Z(donc toujours les nombres a choisir doivent appartenirent à l'ensemble de depart) tel que f(a)=f(b) comparons a et b.

f(a)=f(b) si  et seulement si a2+1=b2+1 c'est à dire a2=b2 d'oû a=b ou a=-b. la condition a=-b entraine que f n'est pas injective.car si c'est injective ona f(a)=f(b) si et seulement a=b

B-COMMENT DEMONTRER QU'UNE APPLICATION EST SURJECTIVE?

1-soit f une application de R vers R qui à x associe 2x.

montrer que f est surjective.

solution:soit y appartenant à l'ensemble d'arrive (ici R),existe-t-il x appartenant à l'ensemble de depart tel que f(x)=y.

f(x)=y si et seulement si 2x=y c'est à dire x=y/2 qui est element de R(ensemble de depart) donc f est surjective.

2-soit f une application de N(ensemble des entiers naturels) vers R  tel que f(x)=x+3.

f est-elle surjective?

solution:soit y appartenant à R,existe-t-il x appartenant à N tel que f(x)=y.

f(x)=y si et seulement si x+3=y c'est à dire x=y-3 . si y=1 on a x= 1-3=-2 qui appartient pas à N on en deduit que f n'est pas surjective.

NB:une application est bijective si seulement si elle est  injective et surjective.

CE PENDANT IL EXISTE UNE METHODE DE DEMONSTRATION D'UNE APPLICATION INJECTIVE QUI EST PRESQUE IDENTIQUE A CELLE DE LA DEMONSTRATION D'UNE SURJECTION LA SEULE DIFFERENCE C'EST QUE LE X TROUVE DOIT ETRE UNIQUE(UN ET UN SEUL).

Besoin d'un professeur de Maths ?

Vous avez aimé l’article ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00/5 - 1 vote(s)
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !