Cours de Physique Seconde Première S Terminale S Tout Niveau Tout Niveau -PC DS – DM Vidéo Collège – Physique / Chimie Exos – Chimie Exos – Physique Résumés
Partager

Les champs magnétiques et les régimes de stations

Par Joy le 14/01/2019 Ressources > Physique-Chimie > programme officiel > CPGE 2 PC > Les Grands Principes de l’Électromagnétisme en PC

Le bloc 3 se consacre à l’étude du champ magnétique en régime stationnaire en prenant appui sur les équations locales : la loi de Biot et Savart ne figure pas au programme. L’objectif est davantage l’étude des propriétés du champ magnétique que le calcul de champs magnétiques : ceux-ci doivent donc se limiter à des situations d’intérêt pratique évident. Pour nourrir cette rubrique en applications on utilise les forces de Laplace et les forces de Lorentz étudiées en PCSI. Enfin la notion de potentiel-vecteur est hors- programme.

Notion maîtresse

Magnétostatique

Notion 1

Champ magnétostatique

Sous-notions associées

  • Équations locales de la magnétostatique et formes intégrales : flux conservatif et théorème d’Ampère.
  • Linéarité des équations.
  • Propriétés de symétrie.
  • Propriétés topographiques.

Compétences exigibles

  • Choisir un contour, une surface et les orienter pour appliquer le théorème d’Ampère.
  • Utiliser une méthode de superposition.
  • Exploiter les propriétés de symétrie des sources (rotation, symétrie plane, conjugaison de charges) pour prévoir des propriétés du champ créé.
  • Justifier qu’une carte de lignes de champs puisse ou non être celle d’un champ magnétostatique ; repérer d’éventuelles sources du champ et leur signe/sens. Associer l’évolution de la norme de B à l’évasement des tubes de champ.

Comment s'exercer en physique-chimie ? Avec les cours que vous allez avoir cette année en classe préparatoire, vous devriez être capable de calculer le champs qui se forme autour d’un câble rectiligne.

Notion 2

Exemples de champs magnétostatiques

Sous-notions associées

Câble rectiligne « infini ».

  • Limite du fil rectiligne infini.
  • Solénoïde long sans effets de bords.
  • Inductance propre.
  • Densité volumique d’énergie magnétique.

Compétences exigibles

  • Déterminer le champ créé par un câble rectiligne infini.
  • Calculer et connaître le champ créé par un fil rectiligne infini.
  • Utiliser ces modèles près d’un circuit filiforme réel.
  • Calculer et connaître le champ à l’intérieur, la nullité du champ extérieur étant admise.
  • Établir les expressions de l’inductance propre et de l’énergie d’une bobine modélisée par un solénoïde.
  • Associer cette énergie à une densité d’énergie volumique.

Notion 3

Dipôles magnétostatiques

Sous-notions associées

  • Moment magnétique d’une boucle de courant plane.
  • Rapport gyromagnétique de l’électron.
  • Magnéton de Bohr.
  • Ordre de grandeur de la force surfacique d’adhérence entre deux aimants permanents identiques en contact.
  • Actions subies par un dipôle magnétique placé dans un champ magnétostatique d’origine extérieure : résultante et moment.
  • Énergie potentielle d’un dipôle magnétique rigide placé dans un champ magnétostatique d’origine extérieure.

Compétences exigibles

  • Utiliser un modèle planétaire pour relier le moment magnétique d’un atome d’hydrogène à son moment cinétique.
  • Construire en ordre de grandeur le magnéton de Bohr par analyse dimensionnelle.
  • Interpréter sans calculs les sources microscopiques du champ magnétique.
  • Évaluer l’ordre de grandeur maximal du moment magnétique volumique d’un aimant permanent.
  • Obtenir l’expression de la force surfacique d’adhérence par analyse dimensionnelle.
  • Utiliser des expressions fournies.
  • Approche documentaire de l’expérience de Stern et Gerlach : expliquer sans calculs les résultats attendus dans le cadre de la mécanique classique ; expliquer les enjeux de l’expérience.

Qu'est-ce-que le quarks ? Saviez-vous qu’il existe de la matière encore plus petite que l’électron : le quarks !

Propriétés de symétrie

Invariances des sources

Mêmes résultats qu’en électrostatique et en magnétostatique !

Plan de symétrie ou d’antisymétrie des sources

Un plan est un plan de symétrie des sources du champ si elles restent inchangées lorsqu’on effectue la la symétrie par rapport à ce plan.

Un plan est un plan d’ antisymétrie des sources du champ si elles sont inversées (changement de signe pour les charges, de sens pour les courants) lorsqu’on effectue la symétrie par rapport à ce plan.

En tout point d’un plan de symétrie des sources, le champ électrique est contenu dans ce plan et le champ magnétique est orthogonal à ce plan.

En tout point d’un plan d’ antisymétrie des sources, le champ magnétique est contenu dans ce plan et le champ électrique est orthogonal à ce plan.

Le principe de superposition

Il est possible d’appliquer le principe de superposition à un système de type entrée-sortie si :

  • La somme de deux entrées quelconque correspond à la somme des deux sorties correspondantes ;
  • Un multiple d’une entrée quelconque correspond le même multiple de la sortie correspondante.

Dans ce cas, c’est-à-dire celui d’un système physique, on peut appeler l’entrée excitation et la sortie réponse.

On obtient alors, en notant les excitations ƒ et les réponses x (donc les mouvements généré par les forces mécaniques ƒ) :

  • Lorsque l’on sollicite le système par une entrée, donc une excitation notée ƒ1, une réponse, donc un déplacement, qui sera noté x1 ;
  • Lorsque l’on sollicite le système par une entrée, donc une excitation notée ƒ2, une réponse, donc un déplacement, qui sera noté x2 .

Définition d’un champ

Champ électrique

En physique, on appelle champ électrique tout champ vectoriel créé par des particules électriquement chargées. Plus exactement, lorsque nous sommes en présence d’une particule chargée, les propriétés locale de l’espace défini sont alors modifié ce qui permet de définir la notion de champ. En effet, si une autre charge se trouve être dans le dit champ, elle subira ce qu’on appelle l’action de la force électrique qui est exercée par la particule malgré la distance. On dit alors du champ électrique qu’il est le médiateur de la dite action à distance.

Si on se veut plus précis, on peut définir dans un référentiel galiléen défini, une charge q définie de vecteur vitesse v qui subit de la part des autres charges présentes, qu’elles soient fixes ou mobiles, une force qu’on définira de force de Lorentz. Cette force se décompose ainsi :

    \[ \overrightarrow { f } = q \left ( \overrightarrow { E } + \overrightarrow { v } \wedge \overrightarrow { B } \right) \]

avec :

  •     \[ \overrightarrow { E } \]

    le champ électrique. Celui-ci décrit dans ce cas la partie de la force de Lorentz qui est indépendante de la vitesse de la charge

  •     \[ \overrightarrow { B } \]

    le champ magnétique. Celui-ci décrit ainsi la partie de la force exercée sur la charge qui dépend du déplacement de cette même charge dans le référentiel choisi.

De plus, il est important de noter que les deux champs, électrique et magnétique, dépendent du référentiel d’étude.

Avec cette formule, on peut alors définir le champ électrique comme étant le champ traduisant l’action à distance subie par une charge électrique fixe dans un référentiel défini de la part de toutes les autres charges, qu’elles soient mobiles ou fixes.

Mais on peut également définir le champ électrique comme étant toute région de l’espace dans laquelle une charge est soumise à une force dite de Coulomb.

On commence à parler de champ électrostatique lorsque, dans un référentiel d’étude, les charges sont fixes. Notons d’ailleurs que le champ électrostatique ne correspond pas au champ électrique comme décrit plus haut dans cet article puisqu’en effet, lorsque les charges sont en mouvement dans un référentiel, il faut ajouter à ce référentiel un champ électrique qui est induit par les déplacement des charges afin d’obtenir un champ électrique complet.

Mais, le champ électrique reste dans la réalité un caractère relatif puisqu’il ne peut exister indépendamment du champ magnétique. En effet, si on observe la description correcte d’un champ électromagnétique, celui-ci fait intervenir un tenseur quadridimensionnel de champ électromagnétique dont les composantes temporelles correspondent alors à celle d’un champ électrique. Seul ce tenseur possède un sens physique. Alors, dans le cas d’un changement de référentiel, il est tout à fait possible de transformer un champ magnétique en champ électrique et inversement.

Le champ électromagnétique

En physique, on appelle champ électromagnétique la représentation dans l’espace d’une force électromagnétique exercée par des particules chargées. Ce champ représente alors l’ensemble des composantes de la force électromagnétique qui s’appliquent à une particule chargée qui se déplace alors dans un référentiel galiléen.

On peut alors définir la force subit par une particule de charge q et de vecteur vitesse par l’expression suivante :

    \[ \overrightarrow { f } = q \left ( \overrightarrow { E } + \overrightarrow { v } \wedge \overrightarrow { B } \right) \]

avec :

    \[ \overrightarrow { E } \]

le champ électrique. Celui-ci décrit dans ce cas la partie de la force de Lorentz qui est indépendante de la vitesse de la charge

    \[ \overrightarrow { B } \]

le champ magnétique. Celui-ci décrit ainsi la partie de la force exercée sur la charge qui dépend du déplacement de cette même charge dans le référentiel choisi.

En effet la séparation de la partie magnétique et de la partie électrique de dépend que du point de vue pris selon le référentiel d’étude.

De plus, il peut être intéressant de savoir que les équations de Maxwell régissent les deux composantes couplées, c’est à dire électrique et magnétique, de sorte que toute variation d’une composante induira la variation de l’autre composante.

D’ailleurs, le comportement des champs électromagnétiques se trouve décrit de façon classique par les équations de Maxwell et de manière plus générale par l’électrodynamique quantique.

La façon la plus utilisée afin de définir le champ électromagnétique est celle du tenseur électromagnétique de la relativité restreinte.

Le champ électrostatique

On parle de champ électrostatique lors que les charges qui constitue le champ sont au repos dans le référentiel d’étude. Ce champ est donc déduit de l’expression de la loi de Coulomb, aussi appelée interaction électrostatique.

Le champ gravitationnel

Qu'est-ce-qu'un satellite ? Chaque corps céleste possède son propre champ gravitationnel permettant au système solaire l’équilibre qu’on lui connait.

En physique classique, on appelle champ gravitationnel, ou encore champ de gravitation, un champ qui est réparti dans l’espace et dû à la présence d’une masse qui est alors susceptible d’exercer une influence gravitationnelle sur tout les autres corps pouvant être présent à proximité immédiate ou non.

On peut démontrer que le champ gravitationnel créé en un point quelconque par un corps ponctuel dérive d’un potentiel scalaire dit newtonien.

En physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l’espace et dû à la présence d’une masse susceptible d’exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L’introduction de cette grandeur permet de s’affranchir du problème de la médiation de l’action à distance apparaissant dans l’expression de la force de gravitation universelle.

On peut interpréter le champ gravitationnel comme étant la modification de la métrique de l’espace-temps. L’approximation newtonienne est alors valable uniquement dans le cas où les corps présentent une vitesse faible par rapport à celle de la lumière dans le vide et si le potentiel gravitationnel qu’ils créent est tel que le quotient du potentiel gravitationnel sur le carré de la vitesse de la lumière dans le vide est négligeable.

On peut approcher le champ électrique et le champ gravitationnel. En effet, l’expression du champ et du potentiel ne sont différents que d’une constante. De plus, les principaux théorèmes de calculs, celui de la superposition ou de Gauss par exemple, peuvent s’appliquer dans les deux cas. Ce qui les différencie alors est le caractère attractif, donc entre deux charges de signe opposé, ou répulsif, donc entre deux charges de même signe, du champ électrique tandis que le champ gravitationnel ne peut être qu’attractif.

Partager

Nos lecteurs apprécient cet article
Cet article vous a-t-il apporté les informations que vous cherchiez ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (Aucune note pour le moment)
Loading...

Poster un Commentaire

avatar