Cours de Physique Seconde Première S Terminale S Tout Niveau Tout Niveau -PC DS – DM Vidéo Collège – Physique / Chimie Exos – Chimie Exos – Physique Résumés
Partager

Par quels moyens est-il possible d’étudier les courants différents interagissants entre eux ?

Par Joy le 11/01/2019 Ressources > Physique-Chimie > Cours de Physique > tous niveaux > La Magnétostatique en Physique

La magnétostatique est l’étude des interactions entre des courants stationnaires. Les équations locales, fournies, servent de point de départ de l’étude. La loi historique (loi de Biot et Savart) qui exprime le champ magnétostatique créé par une distribution de courant est hors programme.

Comment font les oiseaux pour migrer ? C’est bien connu, la planète Terre possède un champ magnétique. Celui-ci est d’ailleurs essentiel voire même vital pour de nombreuses espèces vivantes surtout les oiseaux migrateurs qui se repèrent grâce à ce champ magnétique. On peut notamment évoquer le cas des pigeons voyageurs repèrent le nord terrestre grâce à des particules ferreuses, appelées ferrite, présentes au dessus de leur bec provoquant une coloration violette dans leur champ de vision au niveau du nord magnétique.

Équations locales de la magnétostatique

Les deux équations de Maxwell de la magnétostatique

Méthode de superposition

Il est possible d’appliquer le principe de superposition à un système de type entrée-sortie si :

  • La somme de deux entrées quelconque correspond à la somme des deux sorties correspondantes ;
  • Un multiple d’une entrée quelconque correspond le même multiple de la sortie correspondante.

Dans ce cas, c’est-à-dire celui d’un système physique, on peut appeler l’entrée excitation et la sortie réponse.

On obtient alors, en notant les excitations ƒ et les réponses x (donc les mouvements généré par les forces mécaniques ƒ) :

  • Lorsque l’on sollicite le système par une entrée, donc une excitation notée ƒ1, une réponse, donc un déplacement, qui sera noté x1 ;
  • Lorsque l’on sollicite le système par une entrée, donc une excitation notée ƒ2, une réponse, donc un déplacement, qui sera noté x2 .

Flux de B conservatif

Théorème d’Ampère

Quels sont les moyens mnémotechniques ? Il y a beaucoup de formules et d’équation à connaître dans ce chapitre, mais il est essentiel de les connaître afin de réussir le concours !

PROPRIÉTÉS DE SYMÉTRIE

Invariance des courants

Par translation

Par rotation

Symétrie cylindrique

Mêmes résultats qu’en électrostatique et en magnétostatique !

Plans de symétrie ou d’antisymétrie des courants

  • En tout point d’un plan de symétrie des courants, le champ magnétostatique est orthogonal à ce plan.

  • En tout point d’un plan d’ antisymétrie des courants, le champ électrostatique est contenu dans ce plan.

Un plan est un plan de symétrie des sources du champ si elles restent inchangées lorsqu’on effectue la la symétrie par rapport à ce plan.

Un plan est un plan d’ antisymétrie des sources du champ si elles sont inversées (changement de signe pour les charges, de sens pour les courants) lorsqu’on effectue la symétrie par rapport à ce plan.

En tout point d’un plan de symétrie des sources, le champ électrique est contenu dans ce plan et le champ magnétique est orthogonal à ce plan.

En tout point d’un plan d’ antisymétrie des sources, le champ magnétique est contenu dans ce plan et le champ électrique est orthogonal à ce plan.

Propriétés topographiques

  • Les lignes de champ magnétostatique sont fermées. Elles enlacent des courants et leur orientation est donnée par la règle du tire-bouchon.

  • Conséquence de la conservation du flux : la norme de B augmente là où les lignes de champ se resserrent et les lignes de champ ne peuvent ni converger en un point, ni diverger d’un point.

Exemples de calculs de champs magnétostatiques

Solénoïde “infini”

a. Calcul de B à l’intérieur du solénoïde

  • Avec le théorème d’Ampère, en admettant que le champ magnétique est nul à l’extérieur.

b. Inductance propre

  • Rappel de PCSI : le solénoïde crée un champ magnétique dans lequel il est plongé : il crée donc un flux magnétique propre à travers lui-même. Ce flux propre est proportionnel à l’intensité dans le solénoïde et le coefficient de proportionnalité est appelé inductance propre.

  • Un circuit seul dans l’espace et parcouru par un courant i crée un champ magnétique dans tout l’espace. Le flux de ce champ à travers le circuit lui-même (flux propre) est proportionnel à i. Le coefficient de proportionnalité est l’inductance propre L (ou coefficient d’ autolnduction) du circuit, exprimée en henry.

  • L ne dépend que de la géométrie du système et L> 0.

c. Énergie magnétique et densité volumique associée

Êtes-vous capable de trouver des exemples pour un câble rectiligne “infini” et un fil rectiligne “infini” ?

Action d’un champ magnétique sur un courant

Force de Lorentz dans un champ magnétostatique

  • sur une charge ponctuelle en mouvement

  • sur les porteurs de charge d’un volume élémentaire, force volumique de Lorentz

Pour en savoir plus sur les forces de Lorenz, il est nécessaire de se pencher sur les différents type de champ existant au sein desquels s’exerce cette force.

Champ électrique

En physique, on appelle champ électrique tout champ vectoriel créé par des particules électriquement chargées. Plus exactement, lorsque nous sommes en présence d’une particule chargée, les propriétés locale de l’espace défini sont alors modifié ce qui permet de définir la notion de champ. En effet, si une autre charge se trouve être dans le dit champ, elle subira ce qu’on appelle l’action de la force électrique qui est exercée par la particule malgré la distance. On dit alors du champ électrique qu’il est le médiateur de la dite action à distance.

Si on se veut plus précis, on peut définir dans un référentiel galiléen défini, une charge q définie de vecteur vitesse v qui subit de la part des autres charges présentes, qu’elles soient fixes ou mobiles, une force qu’on définira de force de Lorentz. Cette force se décompose ainsi :

    \[ \overrightarrow { f } = q \left ( \overrightarrow { E } + \overrightarrow { v } \wedge \overrightarrow { B } \right) \]

avec :

  •     \[ \overrightarrow { E } \]

    le champ électrique. Celui-ci décrit dans ce cas la partie de la force de Lorentz qui est indépendante de la vitesse de la charge

  •     \[ \overrightarrow { B } \]

    le champ magnétique. Celui-ci décrit ainsi la partie de la force exercée sur la charge qui dépend du déplacement de cette même charge dans le référentiel choisi.

De plus, il est important de noter que les deux champs, électrique et magnétique, dépendent du référentiel d’étude.

Avec cette formule, on peut alors définir le champ électrique comme étant le champ traduisant l’action à distance subie par une charge électrique fixe dans un référentiel défini de la part de toutes les autres charges, qu’elles soient mobiles ou fixes.

Mais on peut également définir le champ électrique comme étant toute région de l’espace dans laquelle une charge est soumise à une force dite de Coulomb.

On commence à parler de champ électrostatique lorsque, dans un référentiel d’étude, les charges sont fixes. Notons d’ailleurs que le champ électrostatique ne correspond pas au champ électrique comme décrit plus haut dans cet article puisqu’en effet, lorsque les charges sont en mouvement dans un référentiel, il faut ajouter à ce référentiel un champ électrique qui est induit par les déplacement des charges afin d’obtenir un champ électrique complet.

Mais, le champ électrique reste dans la réalité un caractère relatif puisqu’il ne peut exister indépendamment du champ magnétique. En effet, si on observe la description correcte d’un champ électromagnétique, celui-ci fait intervenir un tenseur quadridimensionnel de champ électromagnétique dont les composantes temporelles correspondent alors à celle d’un champ électrique. Seul ce tenseur possède un sens physique. Alors, dans le cas d’un changement de référentiel, il est tout à fait possible de transformer un champ magnétique en champ électrique et inversement.

Le champ électromagnétique

En physique, on appelle champ électromagnétique la représentation dans l’espace d’une force électromagnétique exercée par des particules chargées. Ce champ représente alors l’ensemble des composantes de la force électromagnétique qui s’appliquent à une particule chargée qui se déplace alors dans un référentiel galiléen.

On peut alors définir la force subit par une particule de charge q et de vecteur vitesse par l’expression suivante :

    \[ \overrightarrow { f } = q \left ( \overrightarrow { E } + \overrightarrow { v } \wedge \overrightarrow { B } \right) \]

avec :

    \[ \overrightarrow { E } \]

le champ électrique. Celui-ci décrit dans ce cas la partie de la force de Lorentz qui est indépendante de la vitesse de la charge

    \[ \overrightarrow { B } \]

le champ magnétique. Celui-ci décrit ainsi la partie de la force exercée sur la charge qui dépend du déplacement de cette même charge dans le référentiel choisi.

En effet la séparation de la partie magnétique et de la partie électrique de dépend que du point de vue pris selon le référentiel d’étude.

De plus, il peut être intéressant de savoir que les équations de Maxwell régissent les deux composantes couplées, c’est à dire électrique et magnétique, de sorte que toute variation d’une composante induira la variation de l’autre composante.

D’ailleurs, le comportement des champs électromagnétiques se trouve décrit de façon classique par les équations de Maxwell et de manière plus générale par l’électrodynamique quantique.

La façon la plus utilisée afin de définir le champ électromagnétique est celle du tenseur électromagnétique de la relativité restreinte.

Le champ électrostatique

On parle de champ électrostatique lors que les charges qui constitue le champ sont au repos dans le référentiel d’étude. Ce champ est donc déduit de l’expression de la loi de Coulomb, aussi appelée interaction électrostatique.

Le champ gravitationnel

En physique classique, on appelle champ gravitationnel, ou encore champ de gravitation, un champ qui est réparti dans l’espace et dû à la présence d’une masse qui est alors susceptible d’exercer une influence gravitationnelle sur tout les autres corps pouvant être présent à proximité immédiate ou non.

On peut démontrer que le champ gravitationnel créé en un point quelconque par un corps ponctuel dérive d’un potentiel scalaire dit newtonien.

En physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l’espace et dû à la présence d’une masse susceptible d’exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L’introduction de cette grandeur permet de s’affranchir du problème de la médiation de l’action à distance apparaissant dans l’expression de la force de gravitation universelle.

On peut interpréter le champ gravitationnel comme étant la modification de la métrique de l’espace-temps. L’approximation newtonienne est alors valable uniquement dans le cas où les corps présentent une vitesse faible par rapport à celle de la lumière dans le vide et si le potentiel gravitationnel qu’ils créent est tel que le quotient du potentiel gravitationnel sur le carré de la vitesse de la lumière dans le vide est négligeable.

On peut approcher le champ électrique et le champ gravitationnel. En effet, l’expression du champ et du potentiel ne sont différents que d’une constante. De plus, les principaux théorèmes de calculs, celui de la superposition ou de Gauss par exemple, peuvent s’appliquer dans les deux cas. Ce qui les différencie alors est le caractère attractif, donc entre deux charges de signe opposé, ou répulsif, donc entre deux charges de même signe, du champ électrique tandis que le champ gravitationnel ne peut être qu’attractif.

Comment s'organiser lorsque l'on est en prépa ? N’hésitez pas à travailler avec vos camarades. Cela vous permettra de vous améliorer grâce aux explications de vos amis et au travail d’équipe.

Force de Laplace

  • sur un conducteur filiforme

Moment magnétique (PCSI)

Champ magnétostatique créé par un dipôle

  • Expressions fournies

  • Analogie avec le champ créé par un dipôle électrostatique

Dipôle magnétique dans un champ magnétique extérieur

  • Actions subies, énergie potentielle d’un dipôle magnétique passif (expressions fournies).

  • On note l’analogie avec les expressions obtenues pour le dipôle électrostatique d’où les mêmes conséquences sur l’évolution du dipôle.

  • Un dipôle magnétique tend à aligner son moment dipolaire avec la ligne de champ magnétostatique et à se déplacer vers les zones de champ intense.

Moments dipolaires dans la matière

a. Moment magnétique de l’atome d’hydrogène

  • modèle : spire de courant

  • calcul du moment magnétique

  • rapport gyromagnétique

b. Matière aimantée

Partager

Nos lecteurs apprécient cet article
Cet article vous a-t-il apporté les informations que vous cherchiez ?

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) (Aucune note pour le moment)
Loading...

Poster un Commentaire

avatar